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Abstract

A distributed database utilizing the wide-spread edge com-
puting servers to provide low-latency data access with the
serializability guarantee is highly desirable for emerging
edge computing applications. In an edge database, nodes
are divided into regions, and a transaction can be catego-
rized as intra-region (IRT) or cross-region (CRT) based on
whether it accesses data in different regions. In addition to
serializability, we insist that a practical edge database should
provide low tail latency for both IRTs and CRTs, and such
low latency must be scalable to a large number of regions.
Unfortunately, none of existing geo-replicated serializable
databases or edge databases can meet such requirements.

In this paper, we present Dast (Decentralized Anticipate
and STretch), the first edge database that can meet the strin-
gent performance requirements with serializability. Our key
idea is to order transactions by anticipating when they are
ready to execute: Dast binds an IRT to the latest timestamp
and binds a CRT to a future timestamp to avoid the coor-
dination of CRTs blocking IRTs. Dast also carries a new
stretchable clock abstraction to tolerate inaccurate anticipa-
tions and to handle cross-region data reads. Our evaluation
shows that, compared to three relevant serializable databases,
Dast’s 99-percentile latency was 87.9%∼93.2% lower for IRTs
and 27.7%∼70.4% lower for CRTs; Dast’s low latency is scal-
able to a large number of regions.
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1 Introduction

The prosperity of edge computing fosters the deployment of
distributed databases [35, 59, 88] on edge nodes [3, 7, 11]. An
edge node can provide fast data access for clients in a town
or a city [91] as the network latency from a client to an edge
node is usually less than 10ms [91], much smaller than the la-
tency to a conventional data center (up to 100ms [92]). Here-
inafter, we call a geo-distributed database running in conven-
tional data centers (e.g., Janus [73], Tapir [113], SLOG [86],
Calvin [99], Carousel [109], Spanner [27]) a conventional

database and call a database running on edge nodes (e.g.,
SEQ [59] and T-Cache [35]) as an edge database.

So far, edge databases [35, 59]mainly serve asweb-browsing
caches [82] and provide weak consistency (isolation) guar-
antees [21]. However, the increasingly fast network [62]
enables the deployment of mission-critical applications on
edge nodes (e.g., AR/VR [84, 87], smart-city management [53,
71, 103], and industrial IoT systems [29, 85, 107]). Due to the
rigorous correctness [15, 16, 90] and usability requirements
of these applications, this paper aims to develop an edge
database that provides the serializability guarantee, where
transactions are equivalent to be performed in a serial order.
In this paper, we summarize three characteristics of an

edge database. First, an edge database usually encounters
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(a) The FCFS approach (e.g., Janus [73]) causes CRTs to block IRTs.

(b)The anticipated and stretch approach satisfiesR1 andR2 simultaneously.

Figure 1. A simple example comparing the FCFS approach and
Dast, without considering replication and clock skewness.

workloads with good spatial locality. An edge database typi-
cally groups edge nodes into regions [11, 75], each containing
a number of edge nodes and clients connected with a fast net-
work. Each region holds a number of database partitions (i.e.,
shards) frequently accessed by clients in this region.We call a
transaction an intra-region transaction (IRT) if the client only
accesses shards only in its own region; otherwise, we call it
a cross-region transaction (CRT). Recent work [14, 18, 59, 75]
shows that, in a typical edge workload, a great majority (e.g.,
90% [14]) of transactions are IRTs.
Second, an edge database often serves mission-critical

applications with stringent latency requirements. For an IoT-
powered industrial management system [29, 85, 107], more
than 99% of IRTs (e.g., intra-site robot collaboration) should
finish within a few tens of milliseconds, and CRTs (e.g., re-
mote maintenance and monitoring) should finish within a
few hundreds of milliseconds. Third, an edge database can
involve hundreds or thousands of regions [18, 75] to serve
clients on a large scale.
These characteristics can be distilled into three crucial

technical requirements for an edge database. First (R1), when
an IRT conflicts with a CRT (e.g., has read-write dependen-
cies), the execution of the IRT should hardly be blocked by
the cross-region communication of the CRT. Second (R2),
a CRT Tc should not be aborted due to conflicts if no node
is suspected to have failed [68, 79]. Otherwise, as the cross-
region communication time for Tc can be hundreds of mil-
liseconds, much longer than the finish time of IRTs, Tc may
starve due to repeated aborting if conflicting IRTs contin-
uously arrive. Third (R3), the edge database’s latency and
throughput should be scalable to a large number of regions.
Unfortunately, to the best of our knowledge, although

many systems improve the performance of conventional
databases, none of them can meet these three requirements
simultaneously if deployed on edge nodes. We believe a key
reason is that existing conventional databases schedule trans-
actions using a first-come-first-serve (FCFS) approach based

on their arriving orders at replicas [27, 36, 46, 73, 109, 113]
or a central server [86, 99].

Figure 1a explains twomain scenarios of IRTs being blocked
by CRTs in an FCFS system. First, node A receives an IRT
T2 after preparing a CRT T1, so T2 is ordered after T1 and
is blocked. Second, the execution of T1 on node B needs to
wait for a cross-region data read, so the execution of the
subsequent IRT T3 is blocked. As the cross-region latency
can be tens of times longer than the intra-region latency,
such blockings can easily cause a long tail latency for IRTs.
This paper presents Dast (Decentralized Anticipate and

STretch), a new approach that can enforce serializability and
all three requirements. Dast uses timestamps to order trans-
actions, and our key idea to remedy the deficiency of the
FCFS approach is assigning timestamps to transactions based
on when they are ready to execute. Specifically, when a node
receives a transaction from a client, if the transaction is an
IRT, the node (i.e., the transaction’s coordinator) assigns its
latest timestamp to the IRT for low latency. If the transaction
is a CRT, the coordinator assigns the CRT a future timestamp
to avoid its coordination blocking subsequent IRTs. As shown
in Figure 1b, the CRT T1 is assigned a future timestamp 200
while the late-arriving IRT T2 is assigned timestamp 120,
ordered before T1 without being blocked (R1).

Dast carries a new two-phase decentralized anticipation
protocol (2DA) that integrates the selection of a feasible fu-
ture timestamp for a CRT to the two-phase commit (2PC)
protocol [83] for committing the CRT. Dast’s 2DA proto-
col can commit a CRT without aborts even if nodes’ clocks
are not synchronized, provided that no node is suspected to
have failed (R2). Meanwhile, the 2DA protocol achieves the
minimal number of round trips for committing a CRT.
Even with the 2DA protocol, it is still challenging to en-

sureR1. Consider the CRTT1 with cross-region data reads in
Figure 1. T1’s execution on node B must be half cross-region
round trip time after T1’s execution on node A; however, for
serializability, these two executions should have the same
timestamp, inevitably blocking subsequent IRTs on node B.
Dast addresses this challenge with a new hybrid clock

with stretchable timestamp granularity. As shown in Fig-
ure 1b, when node B’s clock approaches 200, but T1 is still
waiting for cross-region inputs, node B stretches the granu-
larity of its local clock tomake its clock grow slowly untilT1’s
input is ready. By doing so, T3 can be assigned a timestamp
199.(1) ordered before T1, so it is not blocked. Meanwhile,
the stretchability of Dast’s hybrid clock also handles the
inaccuracy of anticipation on the asynchronous Internet.

We implemented Dast on the Janus [73] codebase, a ma-
ture modular framework for evaluating distributed databases.
We compared Dast to three relevant serializable databases,
Janus [73], Tapir [113], and SLOG [86], and we used all work-
loads with locality features evaluated in relevant systems [27,
36, 46, 73, 76, 86, 99, 109, 113]. Our evaluation shows that:
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Dast Tapir [113] Carousel [109] Calvin [99] Spanner [27] Janus [73] SLOG [86] Ocean Vista [36] DPaxos [75], WPaxos [18]
Serializability ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗

R1 ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ n/a.
R2 ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓ n/a.
R3 ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✓

Table 1. Comparison of Dast and existing systems. “n/a.” means not applicable as they do not support multi-shard transactions.
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(a) 99% tail latency of IRTs.
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(b) 99% tail latency of CRTs.
Figure 2. Dast’s tail latency compared to relevant databases on
the standard TPC-C [14] workload (detailed setup is in §6).
• R1: Figure 2a shows that Dast’s 99-percentile latency of
IRTs is 87.9%∼93.2% lower than the three systems.
• R2: Figure 2b shows that Dast’s 99-percentile latency of
CRTs is 27.7%∼70.4% lower than the three systems.
• R3: Dast is scalable to a large number of regions. When
we increased the number of regions from 10 to 100,Dast’s
throughput increased almost linearly, and Dast’s latency
for IRTs and CRTs remained stable.
• Dast’s median latency and throughput were comparable
to relevant systems and were robust to network anomalies.
Our major contribution is Dast, a new transaction sched-

uling method that enforces all the three requirements with
serializability for an edge database. Our other contribution
includes the Dast implementation, released on github.com/

hku-systems/dast. Compared to conventional serializable
databases, Dast takes the first step to meet all the three re-
quirements, making Dast unique to support mission-critical
edge computing applications. Although existing edge databases
can meet these three requirements, none of them has the
same serializability guarantee as Dast. Dast can facilitate
porting various applications to the edge, including smart
industrial plants [25, 97] and intelligent transportation sys-
tems [9, 10], discussed in §6.4.

In the rest of the paper: §2 discusses related work; §3 gives
an overview; §4 shows Dast’s design; §5 covers Dast’s im-
plementation; §6 shows our evaluation; §7 concludes.

2 Background and Related Work

Dast’s design is motivated by the emerging mission-critical
distributed edge computing applications that desire serial-
izability and low tail-latency. For instance, a smart city man-
agement system [26, 53, 60, 110] coordinates vehicles and city
facilities to conduct collaborative road lane allocation, non-
stop toll payment, charging station scheduling, and real-time
traffic lights management for traffic scheduling. A smart grid
system [20, 58] managing the energy transmission between
many power plants and users needs to collect real-time elec-
tricity consumption information from users and to adjust

the power supply routes in order to provide stable voltage
and fast recovery from link failures. Another example is the
smart logistic system [57] which manages robotics to do
goods sorting, shelf distribution, and cargo packing in each
warehouse, and transports goods among many warehouses
to maintain sufficient stock level. Dast’s low tail latency and
serializability are desirable properties for these applications.
Edge databases. Much work [18, 35, 59, 75, 88] leverages
edge nodes to provide fast data access to clients. However,
unlike Dast, they either do not support multi-shard trans-
actions [18, 75] or provide a weaker isolation level than
serializability [35, 59, 88]. Therefore, our evaluation did not
compare Dast with these systems (§6).

DPaxos [75] andWPaxos [18] are two Paxos-based [49, 51]
protocols that achieve low-latency data access and fast leader
elections for a key-value store. Dast is complementary to
them as Dast focuses on serializable transactions.

SEQ [59] provides snapshot isolation [21] to a data cache
on edge nodes; T-Cache [35] defines a new weak isolation
level tailored for web caches; EdgeX [88] determines which
components of a web service should be deployed on edge
nodes. Gesto [17] proposes a novel hierarchical architecture
for causally consistent partially replicated edge data stores
that support fast client migrations. These systems are or-
thogonal to Dast because they ensure only weak isolation,
while Dast ensures transaction serializability.
Conventional geo-distributed databases.There aremany
influential serializable conventional databases [27, 36, 46, 73,
76, 86, 99, 109, 113], but they cannot meet the three crucial
technical requirements (Table 1) if deployed with the partial
replication [55, 56, 109] manner (i.e., each region does not
hold all database shards) on edge computing nodes.

Existing conventional databases lie in two categories. The
first category [46, 77, 109, 113] takes the deferred update
(DU) [42] approach, where a transaction is executed locally
at a coordinator and then certified globally. DU databases
can achieve high throughput on workloads with low conflict
rates. However, DU databases cannot meet R2 because a
CRT is aborted if it conflicts with any other transactions.

Tapir [113] and Carousel [109] are two latest DU databases.
Tapir can meet R1 because an IRT is never blocked by CRTs.
However, the IRT itself may be retriedmultiple times. Carousel
lets a replica reject an incoming transaction if it conflicts
with a prepared one to avoid deadlocks, so Carousel cannot
meet R1. We selected Tapir as our baseline representing DU
databases because Tapir meets one more requirement than
Carousel, and Carousel is not open source.
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The second category (e.g., Calvin [99], SLOG [86], Span-
ner [27], and Janus [73]) takes the state machine replication
(SMR) approach, where nodes first agree on the order of all
transactions and then deterministically execute them. SMR-
based databases meet R2 because they do not abort a CRT
due to conflicts, but they cannot meet R1 because they order
all transactions using the FCFS approach. An IRT may be
blocked by (1) the coordination processes of CRTs arriving
before it, for which we call “coordination blocking” (e.g., T2
in Figure 1), and (2) a CRT waiting for a cross-region read,
for which we call “dependency blocking” (e.g.,T3 in Figure 1).
Dast also takes the SMR approach, but Dast avoids coordi-
nation blockings by anticipation and avoids the dependency
blockings by its new stretchable clock. Below we briefly
introduce latest SMR-based database systems.

Janus [73] has a fast path and a slow path. Each node holds
a dependency graph of incoming transactions. A transaction
T ’s coordinator collects T ’s dependency graphs from par-
ticipating nodes and commits T using the fast path if the
consolidated graph is acyclic; otherwise (slow path), it cuts
the graph into acyclic subgraphs and sends them to partic-
ipating nodes. Janus has both coordination blockings and
dependency blockings (violatingR1), but Janus meetsR3 be-
cause committing a CRT involves only participating regions.
SLOG [86] leverages data locality to achieve low mean

latency for IRTs. SLOG uses a global ordering service [49]
to order all CRTs, and each region has a leader that orders
all transactions accessing this region. SLOG cannot meet R1
due to execution blockings (admitted in its paper). Moreover,
SLOG’s global ordering service is a scalability bottleneck
(R3), as it not only orders all CRTs regardless of whether
they conflict, but also needs to send each ordered log entry
to all regions. Otherwise, a region missing an entry cannot
determine whether the entry is irrelevant or lost.
Ocean Vista (OV) assigns each transaction a timestamp

and maintains a global watermark: transactions with times-
tamps below the watermark can be executed. OV has co-
ordination blockings (R1): an IRT Ti waits for at least one
cross-region RTT before the watermark passes Ti ’s times-
tamp. OV cannot meet R3: for a hundred regions, OV needs
hundreds of nodes withO(n2) message complexity for main-
taining the watermark. Therefore, OV is not suitable for edge
databases, and our evaluation did not include OV.
Hybrid clocks in databases. Dast is not the first database
using hybrid clocks. TicToc [111] presents a late-binding
approach using stretchable timestamps to reduce abort rates
in an optimistic [48] database. Unlike Dast, TicToc is not
geo-distributed. Clock-SI [33] proposes to assign timestamps
that are smaller than the nodes’ physical clocks by a change-
able value to increase transaction commit rates. UnlikeDast,
Clock-SI provides only snapshot isolation. Eunomia [38] uses
hybrid clocks to build a geo-distributed causally consistent
key-value store, while Dast is a serializable edge database.

Region 5
Region 4 
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Region 2 (Toronto)

Region 3 (New York)

T4 B,D

T1 A,E a CRT accessing shards A,E

T2 A,B an IRT accessing shards A,B

X a node serving shard X

the manger node of region 1

M2

M1

M3

...

C1

C2

C3C4

M1

D C

D
C D

C

Fast 
Intra-region Network

RTT < 10ms

E F

E
F E

F

Fast 
Intra-region Network

RTT < 10ms

B

A

B

A B

A

Fast 
Intra-region Network

RTT < 10ms

T2 A, B

T1 A,E

T3 E, F

Coordinate CRT T1
Cross region RTT >100ms

Coordinate CRT T4
Cross region RTT >100ms

Figure 3. Dast’s architecture on edge computing nodes.

Dast’s timestamps have the same format as HLC [47], but
their purposes and the ways for maintaining clocks are differ-
ent. HLC is used for tracking causal dependency [50] among
events, and its frac part increases upon events’ arrival.Dast’s
timestamps’ frac parts are used to assign IRTs timestamps
smaller than prepared CRTs’ to avoid IRTs getting blocked.
Anticipation in consensus protocols. Existing work uses
the anticipation merit to improve the performance of consen-
sus protocols. Sousa et al. [94] propose a new delay compen-
sation approach that can optimistically commit a request if
the network ordering is preserved. Domino [108] leverages
the stable latency of dedicated links among data centers to
assign requests to different log entries. Unlike Dast, these
systems have no transactional support.
Databases in a single data center. Existing work uses
transaction reordering [31, 34, 64] to reduce abort rates in
optimistic databases. Many systems, including STAR [63],
MOCC [104], ERMIA [44],Maat [65], E-Store [96], Polaris [45],
and H-Store [43], improve the performance of databases
running in a data center. All these systems are not geo-
distributed and are orthogonal to Dast.

3 Overview

3.1 System Model

Figure 3 shows Dast’s deployment model. Each node is an
edge server holding a database shard. A region contains mul-
tiple nodes and clients connected with fast networks: the
intra-region round trip time (RTT) is much lower (e.g., less
than ten milliseconds) compared to the cross-region RTT
(e.g., hundreds of milliseconds) [3, 7, 11]. Nodes are equipped
with loosely synchronized clocks (e.g., by NTP [70]). Dast
does not rely on these clocks for consistency.

Each region has a manager to handle node failovers (§4.4)
and to anticipate timestamps for CRTs accessing this region
(§4.3). The manager’s states are replicated by an SMR ser-
vice [79] but only states off the critical path of transaction
processing (e.g., node membership) are replicated.
Partial replication. Dast assigns the region that accesses
a shard most frequently as the shard’s host region. For the
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low latency of IRTs, a shard is synchronously replicated for
2f + 1 copies only within its host region. Nodes in a region
are usually not geographically close for disaster-tolerance.
Consistency and failure model. Dast is designed to run
on an asynchronous network: network packets can be dropped,
reordered, or delayed arbitrarily; the network can be parti-
tioned; nodes and clients can fail by crashing at any time.
We do not consider Byzantine failures [24, 69, 102]. Dast
has the following guarantees:
• One-copy serializability. All transactions performed
in Dast are equivalent to be performed in a serial or-
der [22], and this serial order is identical among replicas.
• No stale reads. Once a transaction T is executed, all
transactions starting afterward see updates made by T .
• Availability.Dast preserves availability if nomore than
f replicas of any shard fail. Cross-region network par-
titions may affect CRTs’ availability but will not affect
IRTs’, which is a desirable feature for an edge database.
Dast preserves availability on arbitrary client failures.

3.2 Dast Protocol Overview

Notations. We use T for a transaction, n for a node, r for
a region,m for a manager. We use nr for a node in region
r and T r for a transaction submitted by a client in region r .
For a CRT T r

c , we call r its home region and other regions as
remote regions. We call all transactions accessing a node n as
n’s relevant transactions. When a client submits a transaction
T to a node, the node works as the coordinator of T .
Two-phase decentralized anticipation (2DA). Dast as-
signs a CRT (Tc ) a future timestamp (ts) to avoids its com-
munication blocking subsequent IRTs (R1). A strawman ap-
proach is lettingTc ’s coordinator at region r1 determine ts by
itself and send it to all Tc ’s participating regions. However,
as nodes’ clocks are not synchronized, and network packets
can be delayed, when Tc arrives at a node nr2 in region r2,
nr2 may have already executed transactions with timestamps
larger than ts , causing Tc to be aborted (violating R2).
Dast’s 2DA protocol integrates the selection of ts to the

2PC protocol [83] for committing the CRT Tc . In the first
phase, Tc ’s participating nodes in each region r determine
a future timestamp tsr that they anticipate to receive the
commit message from Tc ’s coordinator, based on the esti-
mated RTT; these nodes also promise not to assign times-
tamps larger than tsr for any transactions until Tc is exe-
cuted. In the second phase, the coordinator commits Tc with
the largest anticipated timestamp among all participating
regions. As participating nodes promise not to assign times-
tamps larger than ts , Tc will not be aborted if no node fails.
Dast’s hybrid clock. Dast’s clock (dclock) with stretch-
able granularity has two main functionalities. First, it avoids
IRTs from being blocked by an inaccurately anticipated CRT
due to network anomalies or clock skewness. Consider a
node nr anticipating to commit a CRT Tc at time tsr but

cannot receive the commit message in time; then, an IRT
conflicting withTc arrives. To ensure serializability, this node
faces a dilemma: it must abortTc (violatingR2) or let the IRT
wait until theTc is committed (violating R1). Second, Dast’s
hybrid clock relaxes the tension between Dast’s timestamps
and physical time to avoid a committed CRT blocking subse-
quent IRTs when the CRT is waiting for input from remote
regions (i.e., the dependency blocking, see §2).

In Dast, each node’s dclock has three fields ⟨time, nid,
frac⟩: time is the physical part based on the node’s system
clock to facilitate anticipation; nid is unique for each node
to ensure timestamp uniqueness; frac is the logical part to
avoid IRTs being blocked by CRTs. Initially, a node increases
time with its system clock. When it detects that further in-
creasing time will cause an IRT blocked by CRTs, it freezes
time and increases frac instead, so that the timestamp as-
signed to the IRT is smaller than the CRTs’. Once the CRT is
executed, the node resumes time to catch up with the node’s
systems clock to facilitate future anticipations.
Per-region clock tracking (PCT). Dast’s PCT protocol
(§4.3) is inspired by Mencius [66] and ClockRSM [32] but is
different in two aspects. First, they only provide linearizabil-
ity for a single object while Dast ensures serializability for
multi-object transactions. Second, in these systems, a node
needs to track the clocks of all other nodes, while in Dast,
a node only tracks the dclocks of intra-region nodes.

4 Dast Runtime Protocol

4.1 Dast’s Transaction Model

Dast’s transaction model extends the widely-used indepen-
dent transaction model [28, 41, 43, 73] with the support for
acyclic value dependencies and user-level conditional aborts.
In Dast, transactions are written as stored procedures,

which are alsowidely used in existing distributed databases [37,
43, 72, 73, 95, 101]. Each transaction consists of a set of stored
procedures, referred to as pieces. Each piece only accesses
one data shard known a prior. The execution of each piece
is deterministic (i.e., only depending on inputs and current
database state), and pieces accessing the same shard are exe-
cuted atomically in their timestamp order.
We choose to support stored procedures instead of inter-

active transactions because interactive transactions’ latency
requirements are usually less stringent [28, 43] due to user
stalls and can be served by conventional databases.
Supporting acyclic value dependencies. InDast, a trans-
action T can have value dependencies: a piece p1 accessing
shard s1 can take database values stored in another shard
s2 or output of another piece accessing s2 as p1’s input. For
instance, T can transfer all remaining balance from account
y in shard s2 to account x in shard s1, with p1’s logic being
x = x + y. If s1 and s2 are in different regions, we say T
contains a value dependency from the region of s2 to the
region of s1, and Dast’s transaction model requires that a
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CRT does not have circular value dependencies among its
accessed regions. By contrast, in the original independent
transaction model, no value dependency is allowed.

Adding support for value dependency is essential for edge
databases. Conventional databases can preclude such depen-
dencies by vertical replication [74], which replicates depen-
dent columns (of all shards) to all nodes. However, verti-
cal replication is unsuitable for edge databases because it
forsakes data locality and requires all nodes to update the
replicated column synchronously on every change.
Dast uses a push-based mechanism to handle value de-

pendencies. In the previous example, instead of letting p1
read y during its execution phase, Dast lets a piece (e.g., p2)
on s2 read the required value y and send it to n1. This design
is crucial for Dast to achieve low tail latency for IRTs (R1).
Otherwise, if s1 and s2 are in different regions, when p1 does
the cross-region read, it blocks subsequent IRTs (violating
R1). In Dast, p1 does not start to execute until it receives
all remote read values, and Dast’s hybrid clock orders sub-
sequent IRTs before T during such waiting, achieving both
R1 and R2. We say a transaction’s “input is ready” on node
n, when n receives all remote-shard values and can start to
execute. As the dependency graph is acyclic, this mechanism
will not cause a circular waiting.
Supporting conditional aborts.Dast supports conditional
aborts where a transactionT determines whether to apply its
writes based on read values (e.g., aborting a money transfer
due to out-of-balance). For atomicity, all participating nodes
must consistently agree on whether to apply T ’s writes.
To avoid the necessity of another round of voting [106]

on whether to apply T ’s writes, Dast lets the developer
rewriteT ’s stored procedures by adding explicit reads to the
dependent values at all T ’s participating nodes. By doing so,
whenT is executed, all participating nodes will read identical
dependent values (due to serializability) and consistently de-
termine whether to perform data writes. Note that inDast’s
transactionmodel,T ’s value dependencies must still meet the
acyclic requirements after the explicit data reads are added.

All workloads evaluated by us (i.e., TPC-C [14] and TPC-
A [13]) and relevant systems (e.g., YCSB [30], Retwis [52]),
and typical mission-critical edge applications [53, 61, 71, 78,
87, 103] belong toDast’s transaction model. For transactions
whose accessed shards are determined by read values, Dast
can support them using a known technique [43, 73] that
divides each transaction into a read-only transaction and a
conditional-write transaction. In the presence of such trans-
actions, Dast can meet R1 and R3 for these transactions
and all three requirements for other transactions.

4.2 Intra-region Transactions

Each node maintains two queues in the timestamp order for
unexecuted relevant transactions. The readyQ contains two
types of transactions; (1) all received IRTs, and (2) all com-
mitted CRTs. The node will check whether each transaction

Algorithm 1: Coordinate an IRT
1 vid← current view of this node
2 myTxns[]← txns coordinated by this node in ts order
3 notifiedTs[n]← the max timestamp of transactions

coordinated by this node delivered to node n
4 function CreateTs():
5 ret← ⟨now() + offset, nid, 0 ⟩ // the dclock
6 if ! waitQ .empty() && waitQ .head().ts < ret :

7 ret← lastTs // ensure the IRT with ret is not blocked

8 ret.frac++ // fallback to lastTs; increase frac for monotonicity

9 return lastTs← ret

10 function CoordIRT(txn):
11 ts← CreateTs()

12 readyQ .insert(⟨ts, txn⟩)
13 myTxns.insert(⟨ts, txn⟩)
14 for n in txn.partcipatingNodes do

15 send(n, ⟨prepare, txn, ts, vid, GetNotifyTxns(n, ts)⟩)
// GetNotifyTxns(n, ts) returns txns in myTxns[] with

timestamps in the range of ( notifiedTs[n], ts ]

16 when received ack from node n:

17 notifiedTs[n]← max(ts, notifiedTs[n]) // on delivery

18 if majority ack from each participating shard of txn :

19 txn.status← committed

20 send ⟨commit, txn, vid ⟩ to each participating node
21 function CheckAndExecuteTxns(): // Dast’s PCT protocol

22 for txn in readyQ in timestamp order do

23 if txn.status != committed : break

24 if maxTs[n] > txn.ts for each n :

25 Execute(txn)

26 readyQ .erase(txn)
27 else: break

can be executed using Dast’s PCT protocol. Note that once
a CRT is committed, it is put into the same priority queue as
IRTs, so Dast will not cause CRTs to starve.

The waitQ contains only CRTs, and Dast uses this queue
to guide the stretching of its dclock: if the node’s dclock
passes the timestamps of any CRT in the waitQ, subsequent
IRTs will be blocked. This queue contains two types of CRTs:
(1) prepared CRTs associated with their anticipated times-
tamps, and (2) committed CRTs whose inputs are not ready,
associated with their commit timestamps.

Algorithm 1 shows Dast’s protocol for IRTs. On receiving
an IRT Ti , the coordinator assigns it a timestamp tsi using
the CreateTS function (Line 4), which ensures that tsi is
smaller than the timestamps of all CRTs in the waitQ, so
that Ti is not blocked by CRTs (R1). Then, the coordinator
asks for ACKs from majority replicas of each participating
shard and sends a commitmessage to all participating nodes.

In Dast, the key invariant for correctness is that when a
node n executes a committed transactionTi , it must have exe-
cuted all relevant transactions with timestamps smaller than
tsi (§4.5). Dast’s PCT protocol efficiently ensures this invari-
ant. To ease understanding, we assume that all transactions
are IRTs in this subsection. In Dast, when any intra-region
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node nx sends a protocol message to n, it also notifies n two
information: (1) its current dclock value, and (2) the IDs of
all transactions that nx coordinates and accesses n.
By doing so, when n is aware that the dclock of nx has

passed tsi , n knows the IDs of all relevant transactions with
timestamps smaller than tsi coordinated by nx . Therefore,
n maintains an array maxTs for each intra-region node’s
max dclock value that n is aware of; n can execute Ti if all
entries of the array are larger than tsi . To reduce repeated
notifications, Dast adopts an optimization similar to TCP’s
acknowledgmentmechanism: each nodenmaintains themax
delivered (Line 17) notification timestamp to each other node.
Calibrating dclocks among intra-region nodes. To min-
imize IRT delays caused by clock skewness, the time field of
a node’s dclock ahead of the node’s system clock by an ad-
justable offset. On receiving an intra-region message with
piggybacked notification timestamp ts , a node increases its
offset to lets its dclock pass ts , so an IRT does not need to
wait additional time for this node’s dclock passing ts . This
optimization lets the dclocks of a region’s nodes keep pace
with the fastest one, but it maintains monotonicity.

4.3 Cross-region Transactions

Dast lets each region’s manager anticipate timestamps for
all CRTs accessing this region, which is essential for R2 be-
cause it gives a preliminary order to all CRTs accessing this
region. Otherwise, if CRTs interleaves differently at their
participating nodes, their coordinators have to abort some of
them [113] or use additional round trips to reorder them [73].
Algorithm 2 shows Dast’s 2DA protocol for committing

a CRT Tc . In the first phase (Line 1∼5), the coordinator
sends a prep-remote message to the manager of each par-
ticipating region; the managermr of a region r anticipates
a future timestamp tsrc for when the region can receive the
commit-remote message for Tc . This anticipation is based
on the average RTT of recent communication between re-
gion r and the region of the coordinator. Thenmr dispatches
Tc to Tc ’s participating nodes in its region.

On receiving Tc , a participating node nr puts Tc into its
waitQ to prevent its dclock passing tsrc and abortingTc (R2).
Meanwhile, Dast’s stretchable dclock ensures subsequent
IRTs are not blocked by Tc (R1).
A subtlety is that node nr also notifies all intra-region

nodes of the existence ofTc (Line 18). Otherwise, if a node not
accessed by Tc assigns an IRT Ti with a timestamp tsi > tsrc ,
Ti may be blocked as executing it requires the dclocks of all
nodes to pass tsi , but Tc ’s participating nodes’ dclocks are
paused at tsrc . This notification effectively avoids such block-
ings because tsrc is usually ahead of these nodes’ dclocks by
a cross-region RTT, so the notification can usually be deliv-
ered to all intra-region nodes before their dclocks passing
tsrc , and they can stretch their dclock accordingly.

In the second phase (Line 6∼9), after the coordinator ob-
tains quorumACKs from each participating shard, it commits

Algorithm 2: Coordinate a CRT
1 function CoordCRT(txn):
2 replicate to majority replicas of part. shards in my region
3 srcTs← CreateTs()

4 for r in txn.participatingRegions do

5 send(mr
, ⟨prep-remote, txn, srcTs, vid ⟩)

6 when recv acks from majority replicas of each part. shard:

7 commitTs← max(∀r , anticipateTs r , CreateTs())
8 replicate to majority replicas of part. shards in my region
9 send ⟨commit-remote, txn, commitTs ⟩ to part. nodes

10 function GetAnticipateTs(srcTs, srcRegion):
11 updateEstimatedRtt(srcTs, CreateTs(), srcRegion)

12 return CreateTs() + estimatedRtt[srcRegion]

13 upon receiving ⟨prep-remote, txn, srcTs, vid ⟩:
14 anticipateTs

r ← GetAnticipateTs(srcTs, srcRegion)

15 send ⟨prep-crt, txn, anticipateTs r , vid ⟩ to each part.
node in the region of the manager

16 upon receiving ⟨prep-crt, txn, anticipateTs r , vid ⟩:
17 waitQ .insert(⟨anticipateTsr , txn⟩)
18 myTxns.insert(CreateTs(), txn, anticipateTsr )
19 send(txn.coordinator, ACK)
20 upon receiving ⟨commit-remote, txn, commitTs, vid ⟩:

21 waitQ .erase(txn)
22 readyQ .insert(⟨commitTs, txn⟩)

23 if !txn.inputReady() :

24 waitQ .insert(⟨commitTs, txn⟩) // avoid blocking

25 myTxns.insert(⟨commitTs, txn⟩) // notify other nodes

Tc with the maximum anticipated timestamp tsc . The coor-
dinator also quickly replicates the CRT within its region be-
fore sending out the prep-remote and the commit-remote
message so that if it crashes, the manager can retrieve the
coordination progress of the Tc (§4.4).

On receiving committed Tc , node nr does two operations
atomically (Line 20). First,nr putsTc into the readyQ. Second,
nr checks whetherTc ’s inputs are ready (§5). If so,nr removes
Tc from waitQ; otherwise, nr changes Tc ’s timestamp from
tsrc to tsc in the waitQ, ensuring that subsequent IRTs are
not blocked by Tc when Tc is waiting for inputs.
Dast’s complete PCT protocol extends the IRT-only ver-

sion in the previous subsection by two modifications. First,
the manager occupies an entry at the maxTs array at each
intra-region node: a committed transaction can be executed
only after the dclock of the manager and all intra-region
nodes pass the transaction’s commit timestamp. Second,
when node n receives a committed CRT accessing itself, n
notifies all intra-region nodes of this CRT. We do not let the
manager do the notification because the manager’s CRT list
is not replicated (§4.4) and may be incomplete after failovers.
Cross-region clock skewness. Although clock skewness
will not affect Dast’s correctness (§4.5), it may cause a long
latency to a CRT if the CRT is assigned a large anticipated
timestamp. To mitigate this problem, we extend the intra-
region clock calibration mechanism (§4.2) to cross-region:
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Algorithm 3: Removing suspected failed nodes.
1 mNodes← member nodes in this region
2 toRemove← [ ] // suspected failed nodes

3 pCRTs, pIRTs← uncommitted txns by nodes in toRemove

4 upon manager mr
suspecting node n having failed:

5 toRemove.insert(n)
6 mNodes.erase(n)
7 RemoveNodes(toRemove)
8 function RemoveNodes(toRemove):
9 send ⟨remove-prep, + + vid, toRemove ⟩ to mNodes

10 when recv ⟨remove-ack, pendCRTs, pendIRTs ⟩:
11 pCRTs.insert(pendCRTs)
12 pIRTs.insert(pendIRTs)
13 if recv remove-acks from all nodes in mNodes :

14 replicate vid, pCRTs, pIRTs to backup managers
15 send ⟨remove-commit, vid, pIRTs, mNodes ⟩ to mNodes

16 for txn in pCRTs do

17 send(⟨abort, txn, vid ⟩) to partcipatingNodes

18 if timeout for remove-ack from node n′ in mNodes :

19 suspect n′ of having failed // goto line 3

20 upon receiving ⟨remove-prep, vid, toRemove ⟩:

21 pendIRTs, pendCRTs← prepared but uncommitted IRTs
and CRTs coordinated by nodes in toRemove

22 reply(⟨remove-ack, pendCRTs, pendIRTs ⟩)
23 upon receiving ⟨remove-commmit, vid, pIRTs, mNodes ⟩:

24 SwitchView(vid, mNodes)

25 for relevant txn in pIRTs do

26 txn.status← committed

when a node nr receives a message from a remote region
tagged with timestamp ts , it advances its dclock to pass
ts + 1

2RTT if it lags behind, and the intra-region calibration
mechanism will advance the dclocks for other nodes in r .
We will show in §6.3 that this optimization effectively re-
duces CRT latency with the presence of both clock skewness
and asymmetric delay among regions.

4.4 Fault Tolerance

Dast uses a view to represent a region’s state, including
nodes’ membership and the leader election result of the
manager.We first show howDast handles manager failovers,
then show how a manager handles normal node failovers.
Failures of managers. Dast uses an SMR service [79] to
replicate each manager’s states that are not on the critical
path of transaction processing, including the current view
and the 2PC progress for installing new views. A manager’s
dclock and handled CRTs are not replicated.

The SMR service is responsible for failure detections and
will elect a new manager if the current manager is suspected
to have failed. Then, the new manager invokes a 2PC pro-
cess for (1) installing a new view with all intra-region nodes
acknowledging the manager change, and (2) adjusting its
dclock to ensure the monotonicity of anticipated times-
tamps assigned to CRTs. Each node carries its maxTs entry

Algorithm 4: Adding node n as a replica of shard s.
1 function AddReplica(n, s): // called at managermr

2 send ⟨transfer-ckpt, n⟩ to an replica of shard s

3 upon receiving ⟨install-ok, tsckpt ⟩:
4 tsins ← anticipated timestamp for finishing installing n

5 replicate tsckpt , tsins to backup managers
6 mNodes.insert(n)
7 send ⟨add-prep, + + vid, n, tsins ⟩ to mNodes

8 when recv ⟨add-ack⟩ from all mNodes:

9 send ⟨add-commit, vid, mNodes ⟩ to mNodes

10 upon receiving ⟨transfer-ckpt, n⟩:

11 (state, tsckpt ) ←GenerateCheckpoint()

12 when recv delivery ack of ⟨install, state, tsckpt ⟩ to n:
13 send ⟨install-ok, tsckpt ⟩ tomr

14 upon receiving ⟨add-prep, vid, n, tsins ⟩:
15 waitQ .insert(⟨tsins , add(n)⟩) // avoid passing tsins
16 reply(⟨add-ack⟩)
17 upon ⟨add-commit, vid, mNodes ⟩:

18 waitQ .erase(add(n)) // remove the fake txn

19 SwitchView(vid, mNodes)

20 notifiedTs[n]← tsckpt
21 maxTs[n]← tsins

for previous managers in response to the 2PC-prepare mes-
sage, and the new manager adjusts its dclock to the largest
value before serving new requests.
Failures of normal nodes. To reduce the disturbance on
transaction processing, Dast separates the process of fast
failover that quickly removes a suspected failed node and
failure recovery that asynchronously adds back replicas.
(1) Fast failover. Algorithm 3 shows the algorithm of remov-
ing suspected failed nodes. Suppose a node n is suspected to
have failed (e.g., due to RPC timeouts) and is reported to the
manager. Dast takes a simple policy for uncommitted trans-
actions coordinated by n: committing all IRTs received by
at least one node for low IRT latency, and aborting all CRTs
because retrieving their status requires multiple rounds of
cross-region communications.

When installing a new view that removes n using 2PC, the
manager collects uncommitted transactions coordinated by
n from all remaining nodes and these nodes discard subse-
quent messages from n. On receiving all replies, the manager
replicates its 2PC progress to backups and sends the 2PC-
commit message, which also commits all uncommitted IRTs
and aborts all uncommitted CRTs coordinated by n
(2) Asynchronous failure recovery. Algorithm 3 shows
the algorithm for adding a replica n as a replica of shard s .
First,m lets a replica of s send a checkpoint of its current
database state and the executed timestamp tsckpt to n. Then,
n needs to adjust its dclock to be larger than the executed
timestamps of all intra-region nodes, so that it will not gener-
ate transactions preceding an executed one. However, when
n is adjusting its dclock, nodes’ executed timestamps are
continuously increasing.
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Figure 4. Dast does not preserve the real-time order of transac-
tions accessing non-intersecting regions.

Dast addresses this challenge using a special (fake) CRT
accessing all nodes in this region. The manager anticipates a
future timestamp tsins that the new view should be installed.
tsins can be conservatively large as admitting n is asynchro-
nous to normal transaction processing. All nodes put this spe-
cial CRT to their waitQ, so their dclocks will not pass tsins
until n is admitted, and n can directly set its dclock to tsins .

4.5 Proof of Correctness

Dast ensures one-copy serializability (1CS) and prevents
stale reads, the most severe [15, 16] anomaly for a 1CS data-
base. Dast’s guarantee is usually called strong partition
serializability [16, 67].

We do not choose to provide strict serializability because
its precautions are excessive for an edge database. The only
possible (proved below) anomaly in Dast is breaking the
out-of-band dependency of two transactions performed in
non-intersecting regions (e.g., if T2 causes T3 via an out-of-
band channel in Figure 4). Such anomalies may be fatal in
conventional databases (e.g., reordering a forum post and
its comment) but are rare [59] in an edge database, because
these two transactions are performed by different clients
and access data owned by different groups of users. Such
anomalies can be avoided by letting developers write the out-
of-band dependency explicitly in the transaction by adding
a cross-region data read [67].
Lemma 1. When a node n executes a transaction T with a

commit timestamp ts , n has executed all relevant transactions,

either IRTs or CRTs, with timestamps smaller than ts .

Proof sketch. We first prove without node failovers. Node
n’s relevant transactions preceding ts include IRTs or CRTs.
For IRTs, Dast’s PCT protocol ensures that n is notified
with all these IRTs before executing T (§4.2), and n executes
transactions in timestamp order.
Consider any CRT T1 accessing n with anticipated times-

tamp tsr1 and commit timestamp ts1 where tsr1 ≤ ts1 < ts . It
suffices to prove that when executingT , n is aware ofT1 with
ts1. SinceT1 is committed, quorum replicas of n’s shard must
have received the prep-crtmessage. Ifn is in the quorum,n
must have receivedT1’s commit message, because otherwise
its dclock paused before tsr1 and cannot executeT . Ifn is not
in the quorum, consider a replica in the quorum, that replica’s
dclock must have passed ts > tsr1 because n executing T
requires all intra-region nodes’ dclock to pass ts , and thus
this replica must have committed T1 and notified n (§4.3).

Then we prove that Dast’s failovers preserve lemma 1.
It suffices to prove three points. First, a newly added node
will not assign timestamps smaller than an already-executed
transaction. Dast ensures this by letting the newly added
node to adjust its clock using a special CRT transaction
(§4.4). Second, the newly added node can achieve a complete
transaction history when executing a transaction T , which
is ensured by letting all nodes set the notifiedTs entry for
the newly added node to tsckpt (§4.4). Third, there is only
one manager in each region at a time, and its timestamp is
monotonic on failovers. The uniqueness of the manager is
ensured by the SMR service [79], and the manager is recog-
nized by all intra-region nodes using 2PC. The monotonicity
of managers’ dclock is ensured by letting newly elected
managers collect the maxTs entry from all nodes (§4.4).
Proposition 1. Dast ensures one-copy serializability.

Proof sketch. Lemma 1 states that conflicting transactions
execute in timestamp order at participating nodes, which
suffices to prove serializability as the system’s dependency
graph is acyclic [89]. Lemma 1 also derives one-copy as repli-
cas of a shard execute transactions in the same order.
Proposition 2. For any two transactions T1 and T2 accessing
the same region r , ifT2 starts afterT1 finishes,T1 must precede

T2 in the serial order (i.e., ts2 > ts1).

Proof sketch.We prove by contradiction. Suppose ts2 < ts1.
As executingT1 needs the dclock of all nodes in r to pass ts1,
T2’s participating nodes must have executedT2, contradicting
to the fact the T2 starts after T1 finishes.

Proposition 2 derives two important guarantees of Dast.
First, Dast does not have stale reads as a data shard is only
replicated on intra-region nodes. Second, the only possible
anomalies in Dast is breaking the out-of-band dependencies
of two transactions accessing different regions. In sum, Dast
ensures one-copy serializability and no stale reads (§3.1).

4.6 Performance Analysis (R1, R2, and R3)

R1. In Dast, an IRT is not blocked by a CRT waiting for
cross-region messages as long as intra-region RTT is much
smaller than cross-region RTT, and nodes’ system clocks
are non-faulty (i.e., will not randomly advance tens of mil-
liseconds). During intra-region network spikes, such block-
ings may occur, but these scenarios are rare because intra-
region networks are usually connected with ultra-reliable
and low-latency communication (URLLC) and LAN [54, 85,
107]. Moreover, during intra-region spikes, IRT latency is
dominated by the intra-region RTT, and avoiding IRTs being
blocked cannot effectively reduce their tail-latency.

Specifically, an IRTTi may be blocked by a CRTTc waiting
for cross-region messages in two cases: (1)Tc is prepared and
waiting for the commit-crt message, or (2) Tc is committed
and waiting for remote-region inputs. In case (1), supposeTi
is assigned tsi by its coordinator nr , andTc ’s prepared times-
tamp is tsrc . A necessary condition for blocking is tsi > tsrc ,
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which implies that when nr receives Ti , its dclock passes
tsrc , and it is unaware of the existence of Tc (with tsrc ).

However, this condition is rare because intra-region nodes’
dlcocks are calibrated by Dast’s dclock calibration mech-
anism (§4.2) and whenmr anticipates tsrc , tsrc is one cross-
region RTT ahead of its dclock value. As the cross-region
RTT (e.g., hundreds of milliseconds) is usually much larger
than intra-region RTT (e.g., less than ten milliseconds), nr
can usually receive the prepare-crt or notification message
from other nodes (§4.3) before its dclock passes tsrc , even
on retransmission on spontaneous packet losses. Case (2) is
even rarer because the removal of tsrc and insertion of tsc to
a node’s waitQ is atomic (§4.3), so nr cannot assign tsi > tsc
if it cannot assign tsi > tsrc .
R2. In Dast, a CRT is never aborted (except for conditional
aborts) providing that no failover process is triggered. Con-
sider a CRT Tc with commit timestamp tsc . At any of its
participating node nr , Dast ensures that nr will not exe-
cute any transactions with timestamps larger than tsc before
receiving the commit-crt message for Tc , even if nr is not
in the quorum for sending ACK for Tc ’s prepare-crt mes-
sage. If nr is to execute transactions with timestamps larger
than tsc , Dast requires nr to be notified that all intra-region
nodes’ dclocks have passed tsc (§4.3), and nr will get noti-
fied the existence of Tc in such notifications. Therefore, on
any participating node nr , Tc does not need to be aborted.
R3. In Dast, committing a CRT only involves participating
regions, without going through a global centralized service.
As shown in §6.2, a global centralized service for all CRTs
can easily become a scalability bottleneck.

5 Implementation

We implemented Dast with 3011 lines of C++ code on the
Janus codebase [6], a modular framework for evaluating
distributed databases. All of Dast’s protocol messages are
implemented with asynchronous RPC calls. Each node has
two threads, one for checking and executing transactions,
and the other one for handling I/O requests in the RPC server.

We support cross-region value dependencies by analyzing
the dependencies among pieces when a transaction is submit-
ted. Specifically, each input or output variable has a varId,
and each transaction contains a map of 〈varId, shardId〉
in its metadata, recording the dependent shard (if any) of
each variable. When a piece generates an output with a vari-
able in the map, the output is sent to replicas of the target
shard with a SendOutput RPC call.

6 Evaluation

All experiments except for the scalability experiment were
done on our cluster with 25 machines, each with a 2.60GHz
Intel E5-2690 CPU with 24 cores, 40Gbps NIC, and 64GB
memory. The scalability experiment was done on AWS with
up to 100 c5.18xlarge instances in the US East (Ohio) region.

txn new-order payment order-status delivery stock-level

type IRT CRT IRT CRT IRT CRT IRT CRT IRT CRT
ratio 39.60% 4.38% 37.51% 6.57% 3.96% 0% 3.95% 0% 4.02% 0%
total 43.98% 44.08% 3.96% 3.95% 4.02%

Table 2. Transaction mix ratio of TPC-C in a Dast trial.

We ran each node in a docker container and used tc [12] to
control the RTT among nodes.
Baseline. We compared Dast with three latest serializable
geo-distributed databases: SLOG [86], Janus [73], and Tapir [113].
We chose them because Janus is our codebase; Tapir is a
state-of-the-art deferred update database; SLOG is a latest
SMR-based database that exploits transactions’ spatial lo-
cality. Their protocols are described in §2. We did not com-
pare to other edge databases because they either do not sup-
port multi-shard transactions (e.g., DPaxos [75]) or provide
weaker guarantees than serializability (e.g., SEQ [59]).

For an apple-to-apple comparison, all baseline systems
were implemented on the Janus framework [4]. We extended
SLOG and Tapir to have the same guarantee §3.1 as Dast.
For Tapir, we extended the implementation evaluated and
calibrated in the Janus paper [73] to a non-strict serializable
version presented in its paper [113]. We implemented SLOG
with 2452 lines of code, using Raft [79] with three replicas
as its global ordering service, as suggested in its paper [86].
We set the log exchange interval to 5ms, same as its open-
source code [5]. To make SLOG have the same guarantee
as Dast, we let a shard release a transaction T ’s lock once
the execution of T ’s pieces accessing this shard finishes (i.e.,
downgrading from strong strict two-phase locking to two-
phase locking [23]); We did not use SLOG’s code because it
does not support stored procedures.
Overall, our evaluated SLOG and Tapir implementations

have the same serializability guarantee (§3.1) as Dast, and
Janus ensures strict serializability.
Workloads. As far as we know, there is no standard bench-
mark for serializable edge databases. Therefore, for a fair
comparison, we evaluatedworkloads with locality features in
all relevant conventional databases [27, 36, 46, 73, 76, 86, 99,
109, 113], including TPC-C-default (evaluated in Janus [73],
SLOG [86], Calvin [99], Spanner [27]), TPC-A (a compara-
ble workload to YCSB, as YCSB was used in Tapir [113] and
Carousel [109]), and TPC-C Payment-only. Specifically, we
used TPC-C Payment-only to stress-test Dast on different
portions of CRTs because the TPC-C Payment transaction
is read-write intensive and has cross-region value dependen-
cies. Although retwis [52] was evaluated in Carousel [109]
and Tapir [113], we did not evaluate retwis because it does
not have locality feature and thus is not edge-relevant.

Although these benchmarks are general and not dedicated
to edge scenarios, they have already covered diverse data
access patterns in various edge-computing applications. For
instance, edge applications often exhibit good spatial locality
(i.e., most of a client’s transactions access data held by nearby
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Figure 5. TPC-C performance with different numbers of clients.

nodes), which have been well emulated by TPC-C, since
around 90% of the client’s transactions access data in its own
warehouse [14]. The TPC-C payment transaction reads an
account and writes to a contended data field, similar to the
trade booking transaction in edge-based high-frequency and
latency-sensitive trading [115]. The TPC-A benchmark with
different conflict rates is similar to charging plant scheduling
in areas of different user densities.
Deployment. To match edge deployments, we horizontally
partitioned the TPC-C database based on warehouse id (i.e.,
each shard is a warehouse). We ran 10∼100 regions, each con-
taining 30 edge nodes holding 10 shards with a replication
level of 3. Since a TPC-C client is already associated with
a warehouse ID, we assigned each client to the region con-
taining the client’s warehouse. Each client sent transactions
in closed-loop to a random replica of its warehouse. As in
recent edge computing surveys [91], we set the intra-region
RTT (between two nodes or from a client to a node) to 5ms
and the cross-region RTT to 100ms. We did not run our ex-
periments across AWS regions [11] because AWS does not
have enough regions (i.e., 100). We set the same RTT among
regions by default to ease the analysis and discussions of the
tail latency of each system.

We ran each experiment for 30 seconds and collected the
result in the middle 15s (i.e., 7.5s∼22.5s) to avoid the distur-
bance caused by system start-up and cool-down. For latency,
wemeasured the client-side latency, including retries. For tail
latency, we measured the 99-percentile tail latency to match
the requirements of mission-critical applications on edge
nodes [85, 107]. We did not use 95-percentile latency because
TPC-C has transaction types with a mix ratio smaller than 5%.

Our evaluation focused on these questions:
§6.1 : How do Dast’s throughput and latency compare to

relevant serializable conventional databases?
§6.2 : Can these systems scale to a large number of regions?
§6.3 : Is Dast sensitive to network anomalies?
§6.4 : What are the limitations and potentials of Dast?

Phase

remote

prepare

local

prepare

wait

exe.

wait

input

wait

output

total

avg. time w/o dep (ms) 107.8 7.3 13.3 0 87.6 216.3
avg. time w/ dep (ms) 107.1 7.2 14.9 86.7 1.4 218.4

Table 3. Latency breakdown of CRTs in Dast on default TPC-C
with 500 clients per region (peak throughput). “w/ dep” & “w/o
dep” represent whether a transaction has cross-region value de-
pendencies; “remote prepare” is the time for collecting anticipated
timestamp from participating regions; “local prepare” is for col-
lecting replicating anticipated timestamp within the coordinator’s
region; “wait exe.” is the waiting time in the readyQ; “wait input”
is for waiting for input values from remote regions; “wait output”
is for waiting for transaction output from remote regions.

6.1 Performance on Different Workloads

TPC-C-default. Figure 2 and Figure 5 show the perfor-
mance of the four systems. Overall, Dast was the only sys-
tem meeting both R1 and R2. Dast reduced the tail latency
by 87.9%∼93.2% for IRTs and 27.7%∼70.4% for CRTs com-
pared to three relevant systems and achieved comparable
throughput. Dast’s CRT median latency was 7.6% higher
than Janus on average; we consider this tradeoff worthwhile
considering the reduction of tail latency for both IRTs and
CRTs. Each node consumed at most 40.8 Mbps bandwidth,
which can be fulfilled by existing edge data centers [19, 114].

For throughput, Dast, Janus, and SLOG climbed until
their CPUs were saturated. SLOG dropped slightly after 600
clients per region due to the large number (up to 1000×10) of
concurrent connections to the global ordering server. Tapir’s
throughput dropped due to aborts and retries [36, 73, 109].
The IRT median latency of Dast, SLOG, and Janus in-

creased slightly due to the queuing time after each system
was saturated. Tapir’s median latency increased dramatically
because IRTs were aborted and retried multiple times.
The IRT tail latency for SLOG and Janus increased from

1RTT because they order conflicting transactions using the
FCFS approach (§2), resulting in IRTs blocked by CRTs. We
looked into the logs and found that such blockings were
mainly due to CRTs of type payment-by-name, where a
cross-region value dependency is needed for retrieving client
ID. Therefore, we chose TPC-C-payment only as our stress
test workload. We did not observe such blockings in Dast,
and Dast’s IRT tail latency increased due to the queuing
time. Tapir’s IRT tail latency was low when the number
of clients was small because IRTs are not blocked (§2), but
increased dramatically when the conflict rate increased.
Dast’s CRT median latency was higher than Janus’s be-

cause Dast prioritizes IRTs. To further understand Dast’s
CRT latency, we collected its breakdown, shown in Table 3.
The “wait for execution” part was faster than half RTT be-
cause Dast’s dclock calibration protocol makes the clock
go faster (§4.2). However, the commit message and transac-
tion outputs took one RTT to travel back, and transactions
with or without cross-region value dependencies wait for
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Figure 6. Performance on different CRT ratios in the TPC-C Payment-only workload. We selected the number of clients that made each
system reach its peak throughput on the most heavily loaded 1% trial (error bars omitted for readability).

Phase

remote

prepare

local

prepare

wait

exe.

wait

input

wait

output

total

avg. time w/o dep (ms) 107.4 7.3 246.2 0 18.4 379.3
avg. time w/ dep (ms) 108.1 7.2 235.7 78.4 7.03 446.8

Table 4. Latency breakdown of CRTs inDast for the payment-only
workload with 40% of all transactions being CRTs.

this RTT in different phases of their transaction. In either
case, the waiting did not block subsequent IRTs thanks to
Dast’s stretchable clock (§4.3).

To understandwhyDast’s CRTmedian latencywas higher
than Janus’s while CRT tail latency was lower, we collected
their CRT CDF with 500 clients per region (peak throughput),
shown in Figure 5d. Janus’s CRT median latency was around
2 RTTs because more than half of the CRTs entered its fast
path, which used 1 RTT to commit a CRT and 1 RTT for col-
lecting outputs. Its tail latency was around 4 RTTs, instead of
3 RTTs in its slow path protocol (§2). We looked into its log
and found the additional RTT is caused by a dependent piece
of one CRT blocked by other CRTs’ pieces waiting for inputs.

SLOG’s CRT median latency climbed from about 2.5 RTTs
and increased faster than Dast and Janus due to the queuing
effect at the global ordering service. Tapir’s median and tail
latency for CRTs increased dramatically because CRTs were
retried many times.
Performance on different ratios of CRTs. To stress-test
Dast’s performance on different ratios of CRTs, we selected
the payment transaction and adjusted its CRT ratio from 1%
to 99%. Around 60% of the CRTs have cross-region value
dependencies [14]. The result is shown in Figure 6. All sys-
tems’ throughput dropped when the ratio of CRTs increased
because a CRT’s finish time is much longer than an IRT’s.
Dast’s median and tail IRT latency was stable because

IRTs were never blocked by CRTs. Tapir’s latency was also
stable because the conflict rate was low with the number
of clients making Tapir reach its peak throughput. Janus’s
and SLOG’s IRT latency increased with the CRT ratio as the
probability that an IRT is blocked by CRTs increased.

Dast’s CRT latency (median and tail) increased when the
CRT ratio increased from 0% to 40%. To understand the rea-
son, we collected the breakdown of CRT latency with 40%
CRT ratio (i.e., when Dast achieved the highest latency),
shown in Table 4. Comparing it with Table 3, the major in-
crement was from the “waiting for execution” phase. This is
because a node’s dclock froze its time field when a CRT is
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Figure 7. Performance on different conflict rates in the TPC-A
workload (error bars omitted for readability).

waiting for its input to prioritize IRTs, which delays subse-
quent CRTs. The increment stalled after the CRT ratio was
more than 40% because the total throughput dropped.
The CRT latency (median and tail) of Janus and SLOG

increased with the CRT ratio because CRTs with cross-region
dependencies blocked each other and accumulated. Note that
such blockings only happen in edge deployments and will
not happen if the database is fully-replicated among a few
conventional data centers. Tapir’s conflict rate first increased
because IRTs had fewer conflicts than CRTs due to shorter
finish time, and then dropped due to the drop in system load.
Overall, Dast ensures low latency for IRTs (R1) regard-

less of CRT ratios, but Dast may achieve a high latency for
CRTs if the CRT ratio is high (e.g., larger than 30%). Dast
is complementary to conventional databases: Dast is more
suitable for typical edge workloads [35, 59, 75, 88] with good
locality features, while workloads without locality features
are more suitable to be served by conventional databases.
Performance on different conflict rates.We ran the TPC-
A micro-benchmark and changed the zipf coefficients from
0.5 to 1.0. The result is shown in Figure 7. Overall, Dast is in-
sensitive to conflict rates becauseDast relies on the intrinsic
orders of unique timestamps to order all transactions.
For throughput, when the conflict rate was low, Janus

achieved the highest throughput because most transactions
entered the fast path. SLOG’s throughput was also higher
than Dast thanks to the batching of small transactions.
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Figure 8. Performance on different numbers of regions in the TPC-C workload (error bars omitted for readability).

Dast’s throughput was relatively stable becauseDast orders
all transactions regardless of whether they conflict.

All systems’ IRT latency was stable except for Tapir. This
is because TPC-A has only independent transactions without
cross-region value dependencies. Tapir’s latency increased
when the conflict rate was high.

The CRT latency of Dast and SLOG was stable because
they order all transactions regardless of whether they conflict.
Tapir’s latency increased due to conflicts, consistent with
the result reported in Janus’s paper [73]. Janus’s latency
increased due to two reasons. First, Janus switched from its
fast path to its slow path when the conflict rate increased.
Second, a node needed to send an inquiremessage to know
whether a dependent transaction had been committed (§2).

6.2 Scalability to the Number of Regions

We ran 10 to 100 regions and let each region have the number
of clients that made each system achieve peak throughput in
Figure 5. The result is shown in Figure 8. Dast, Janus, and
Tapir showed good scalability: their throughput scaled near
linearly to the number of regions. This is because in these
three systems, IRTs in each region work independently, and
IRTs contributed to around 90% (Table 2) of total throughput.

To further understandDast’s performance, we also looked
into its CRT throughput per region and found that this num-
ber is roughly stable, changing from 953 for 10 regions to 866
for 100 regions. The drop was mainly due to the increased
number of RPC connections on each manager. This result
is as expected because in TPC-C, the number of regions ac-
cessed by each CRT does not increase with the total number
of regions, so the number of CRTs accessing each region
does not change with the total number of regions. This also
explains why the latency of these three systems was stable.
SLOG’s throughput increased from 10 to 30 regions and

started to drop because the global ordering service is a scal-
ability bottleneck. When the number of regions was 100, the
leader needs to handle CRTs from 50000 clients and to send
each CRT to all regions’ managers. We investigated into the
log and found that time for dispatching a CRT increased
from 685us to 5.48ms on average. Therefore, CRT latency
increased dramatically, and as the clients were in close-loop,
the system’s throughput dropped accordingly.

Overall, Dast, Tapir, and Janus meet R3, and Dast is the
only system that meets all three requirements simultane-
ously. Moreover, the result also indicates that Dast has the
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Figure 9. Dast’s performance on cross-region network anomalies.

potential to scale to a large number of regions on typical edge
workloads, because Dast scales near linearly to the number
of regions, and the only bottleneck of marinating concurrent
RPC connections is from the implementation level, which
has been actively explored in both academia [40, 93, 100, 112]
and industry [1, 2, 8]. Note that SLOG’s scalability bottleneck
is that its ordering server needs to send CRTs to a large num-
ber of servers, instead of simply maintaining connections.

6.3 Robustness to Network Anomalies

We first set the cross-region RTTs to 100 ± x ms with a
uniform distribution. We spawned clients with the number
that madeDast reach peak throughput in Figure 5. As shown
in Figure 9b, Dast’s latency for IRTs was stable (R1) because
Dast’s hybrid clock avoids a CRT from blocking IRTs even
if the anticipation of CRT’s commit time is inaccurate (§4.2).
The latency of CRTs increased roughly proportional with x
increasing, which infers that Dast’s performance for CRTs
is robust because the disturbance of network anomalies did
not accumulate.Dast’s throughput showed only a little drop
because IRTs contributed to most of the throughput.

We then evaluatedDast’s performance on abrupt changes
of cross-region RTT (e.g., caused by network spikes). We
changed the RTT among regions every 10s (vertical lines in
the figures): we increased the cross-region RTT from 100ms
to 150ms at 10s and back to 100ms at 20s; then, we changed
the RTT from 100ms to 50ms at 30s and back to 100ms at
40s. We collected the latency and throughput every 500ms.

The IRT latency was stable because an IRT is not blocked
by CRTs. The slight change was due to the change in system
load as we selected the number of clients that made Dast
just saturate. The CRT latency dropped slowly when the
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Figure 10. Dast’s performance on cross-region clock skewness.

RTT dropped because Dast uses the average RTT based
communication history (§4.3) to estimate RTTs among re-
gions; when the network latency dropped, the average RTT
is larger than the real RTT until the average RTT dropped.
Nevertheless, inaccurate estimation of CRT does not block
subsequent IRTs. Overall, Dast is robust to network anom-
alies asDast’s hybrid clock ensures that IRTs are not blocked
by CRTs (R1) regardless of cross-region network anomalies.
To evaluate Dast’s performance on cross-region clock

skewness, we ran two regions, each with 10 shards and 3
replicas per shard. At 20s, we advanced the system clock of
the manager node in the second region by 200ms and shut
down its NTP process. Figure 10a shows the result (collected
every 500ms).Dast’s IRT latencywas stable, but CRT latency
showed an obvious spike because these CRTs were assigned
a large anticipated timestamp when we advance the clock.
The increment of CRT median latency was slower because
the CRTs coordinated by the region whose clocks are faster
were not obviously affected. The latency drops soon because
Dast’s clock calibration mechanism (§4.2 and §4.3) advanced
the dclcoks for other nodes to catch up.
To evaluate Dast’s performance in the presence of both

clock skewness and asymmetric network delay, we ran Dast
with two regions, each with 10 shards and 3 replicas per
shard. We set the clocks for nodes in the second region to be
200ms faster than nodes in the first region and disabled NTP.
The RTT was still 100ms but we altered the one-way delay
between the two regions. As shown in Figure 10b, Dast’s
CRT latency increased as the asymmetry became severe be-
cause Dast’s optimization assumes a symmetric network
(§4.3). However, in most real-world networks, one-way delay
takes no more than 70% of the total RTT [81].

6.4 Discussion

Dast has four limitations. First, same as existing partially
replicated database systems (e.g., CockroachDB [67]), Dast
ensures one-copy serializability instead of strict serializabil-
ity. However, if developers explicitly write down out-of-band
dependencies among transactions accessing non-intersecting
regions, Dast will have the same guarantee as strict serializ-
able databases (§4.5). Second, Dast supports only workloads
written in stored procedures. Stored procedures are widely
used in distributed databases [37, 43, 72, 73, 95, 101] due to its
good performance, maintainability, and security [39, 80, 105],
and all workloads evaluated by relevant databases [13, 14, 30,

52] can be written as stored procedures. Third,Dast requires
a CRT’s value dependencies to be acyclic (§4.1). Nevertheless,
Dast’s transaction model is already more general than the
widely used independent transaction model [28, 41, 43, 73]
that prohibits all value dependencies. As noted in [98, 109],
value dependencies are usually used for accessing values by
secondary index in real-world workloads, so cyclic depen-
dencies are usually rare [72]. In the presence of such CRTs,
Dast can easily detect them by using the simple analysis
mechanism (§5), andDast can support them either by letting
CRTs abort on conflicts to ensure low latency for IRTs or by
letting IRTs wait. We plan to leave this as our future work.
Fourth, Dast targets workloads [35, 59, 75, 88] with good
locality, while workloads without such a locality feature are
more suitable to be served by geo-distributed databases [27,
36, 46, 73, 76, 86, 99, 109, 113] in conventional data centers.

Overall,Dast is complementary to conventional databases:
when the CRTs take just a minor portion of all transac-
tions, Dast enforces much lower, stable, and scalable tail
latency for both IRTs and CRTs than conventional databases;
otherwise, conventional databases could be more suitable
(see §6.1). Dast is also complementary to existing edge
databases [59, 75]: Dast provides serializable data access to
mission-critical applications while existing edge databases
can provide faster data accesses for applications that require
only weak consistency (e.g., web-browsing). Dast has the
potential to facilitate the porting of various applications to
the edge to harness the locality of clients’ data access and
to provide better user experience.

7 Conclusion

We presented the design, implementation, and evaluation of
Dast, the first distributed edge database that enforces both
serializability and the three crucial performance require-
ments to support mission-critical applications deployed on
edge computing nodes. Dast schedules transactions based
on anticipating when they are ready to execute, and Dast
carries a new stretchable clock abstraction to tolerate inac-
curate anticipations in the asynchronous Internet. Dast’s
code is released on github.com/hku-systems/dast.
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