
199

PolarDB-IMCI: A Cloud-Native HTAP Database System at
Alibaba
JIANYING WANG, TONGLIANG LI, HAOZE SONG, XINJUN YANG, WENCHAO ZHOU,
FEIFEI LI, BAOYUE YAN, QIANQIAN WU, and YUKUN LIANG, Alibaba Group, China
CHENGJUN YING, Alibaba Group, China and Zhejiang University, China
YUJIE WANG, BAOKAI CHEN, CHANG CAI, YUBIN RUAN, XIAOYI WENG,
SHIBIN CHEN, LIANG YIN, CHENGZHONG YANG, XIN CAI, HONGYAN XING,
NANLONG YU, XIAOFEI CHEN, and DAPENG HUANG, Alibaba Group, China
JIANLING SUN, Alibaba Group, China and Zhejiang University, China

Cloud-native databases have become the de-facto choice for mission-critical applications on the cloud due
to the need for high availability, resource elasticity, and cost efficiency. Meanwhile, driven by the increasing
connectivity between data generation and analysis, users prefer a single database to efficiently process both
OLTP and OLAPworkloads, which enhances data freshness and reduces the complexity of data synchronization
and the overall business cost.

In this paper, we summarize five crucial design goals for a cloud-native HTAP database based on our
experience and customers’ feedback, i.e., transparency, competitive OLAP performance, minimal perturbation
on OLTP workloads, high data freshness, and excellent resource elasticity. As our solution to realize these goals,
we present PolarDB-IMCI, a cloud-native HTAP database system designed and deployed at Alibaba Cloud.
Our evaluation results show that PolarDB-IMCI is able to handle HTAP efficiently on both experimental and
production workloads; notably, it speeds up analytical queries up to ×149 on TPC-H (100𝐺𝐵). PolarDB-IMCI
introduces low visibility delay and little performance perturbation on OLTP workloads (< 5%), and resource
elasticity can be achieved by scaling out in tens of seconds.

CCS Concepts: • Information systems→ DBMS engine architectures; Database transaction processing;
Online analytical processing engines.

Additional Key Words and Phrases: cloud databases, hybrid transactional and analytical processing

ACM Reference Format:
Jianying Wang, Tongliang Li, Haoze Song, Xinjun Yang, Wenchao Zhou, Feifei Li, Baoyue Yan, Qianqian Wu,
Yukun Liang, Chengjun Ying, Yujie Wang, Chang Cai, Baokai Chen, Yubin Ruan, Xiaoyi Weng, Shibin Chen,
Liang Yin, Chengzhong Yang, Xin Cai, Hongyan Xing, Nanlong Yu, Xiaofei Chen, Dapeng Huang, Jianling

Authors’ addresses: Jianying Wang, beilou.wjy@alibaba-inc.com; Tongliang Li, litongliang.ltl@alibaba-inc.com; Haoze
Song, songhaoze.shz@alibaba-inc.com; Xinjun Yang, xinjun.y@alibaba-inc.com; Wenchao Zhou, zwc231487@alibaba-
inc.com; Feifei Li, lifeifei@alibaba-inc.com; Baoyue Yan, baoyue.yby@alibaba-inc.com; Qianqian Wu, daisy.wqq@alibaba-
inc.com; Yukun Liang, liangyukun.lyk@alibaba-inc.com, Alibaba Group, China; Chengjun Ying, yingcj@zju.edu.cn,
Alibaba Group, China and Zhejiang University, China; Yujie Wang, zhencheng.wyj@alibaba-inc.com; Baokai Chen,
baokai.cbk@alibabainc.com; Chang Cai, caichang.cc@alibaba-inc.com; Yubin Ruan, yubin.ryb@alibaba-inc.com; Xi-
aoyi Weng, echo.wxy@alibaba-inc.com; Shibin Chen, wuha.csb@alibaba-inc.com; Liang Yin, allen.yinl@alibaba-
inc.com; Chengzhong Yang, chengzhong.ycz@alibaba-inc.com; Xin Cai, frank.cx@alibaba-inc.com; Hongyan Xing,
diane.xhy@alibaba-inc.com; Nanlong Yu, nanlong.ynl@alibaba-inc.com; Xiaofei Chen, chenxiaofei.cxf@alibaba-inc.com;
Dapeng Huang, wuzang.hdp@alibabainc.com, Alibaba Group, China; Jianling Sun, sunjl@zju.edu.cn, Alibaba Group, China
and Zhejiang University, China.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2023 Copyright held by the owner/author(s).
2836-6573/2023/6-ART199
https://doi.org/10.1145/3589785

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 199. Publication date: June 2023.

HTTPS://ORCID.ORG/0009-0008-3368-1881
HTTPS://ORCID.ORG/0000-0002-2961-3068
HTTPS://ORCID.ORG/0009-0000-5952-5168
HTTPS://ORCID.ORG/0000-0001-8507-4444
HTTPS://ORCID.ORG/0009-0002-2689-6020
HTTPS://ORCID.ORG/0009-0003-0770-5775
HTTPS://ORCID.ORG/0000-0002-2236-5903
HTTPS://ORCID.ORG/0009-0005-5282-935X
HTTPS://ORCID.ORG/0009-0008-5091-5942
HTTPS://ORCID.ORG/0009-0004-0649-6630
HTTPS://ORCID.ORG/0009-0004-7722-0455
HTTPS://ORCID.ORG/0009-0008-9084-7112
HTTPS://ORCID.ORG/0009-0006-6148-1399
HTTPS://ORCID.ORG/0009-0007-6287-508X
HTTPS://ORCID.ORG/0009-0006-7278-2461
HTTPS://ORCID.ORG/0009-0006-2141-8766
HTTPS://ORCID.ORG/0009-0006-2141-8766
HTTPS://ORCID.ORG/0009-0001-0393-5296
HTTPS://ORCID.ORG/0009-0007-9700-9317
HTTPS://ORCID.ORG/0009-0002-3126-4976
HTTPS://ORCID.ORG/0009-0001-6394-4688
HTTPS://ORCID.ORG/0009-0009-8729-1165
HTTPS://ORCID.ORG/0009-0009-8729-1165
HTTPS://ORCID.ORG/0009-0008-7093-4323
HTTPS://ORCID.ORG/0009-0005-8934-6474
HTTPS://ORCID.ORG/0000-0001-8799-6020
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3589785

199:2 Jianying Wang et al.

Sun. 2023. PolarDB-IMCI: A Cloud-Native HTAP Database System at Alibaba. Proc. ACM Manag. Data 1, 2,
Article 199 (June 2023), 25 pages. https://doi.org/10.1145/3589785

1 INTRODUCTION
In recent years, cloud-native databases [8, 21, 26, 53] have become an inexorable trend in the
database industry. Different from on-premise databases, a cloud-native database decouples its
architecture into two layers: a computation layer and a storage layer, allowing resources to scale
independently. Nodes equipped with disks (in the storage layer) form a shared storage pool that
serves as a unified data interface for nodes in the computation layer. This disaggregation architecture
enables database systems to offer extreme elasticity, flexible on-demand charging models, and low
operating costs for customers. As a result, the market of cloud-native databases has quickly taken
off [37].
Meanwhile, we have witnessed another trend that the line between classic OLTP and OLAP

databases started to blur: there is a growing need for a database to provide sufficient support
for both transactional processing and analytical processing, especially in the fields of business
intelligence [52], social media [5, 39], fraud detection [7], and marketing [22, 57]. To provide such
capability, traditional solutions often deploy data and application logic into two databases, one
specialized in OLTP and the other in OLAP (e.g., MySQL [41] for OLTP, and ClickHouse [15]
for OLAP), and rely on data synchronization techniques (such as Extract-Transform-Load [51]
(ETL) workflow) for ensuring consistencies between them, as shown in Figure 1. According to
our statistics, nearly 30% of the customers of PolarDB, an OLTP database, synchronize data to an
independent data warehouse system for data analytics needs.

Such solutions are costly, as it negatively impacts the OLTP performance, and introduces a time-
consuming data synchronization process, which further leads to delays or even inconsistencies
between the data maintained at the TP/AP databases. In practice, these issues lead to sub-optimal
user experience and a large number of user inquiries. To address these issues, it calls for a cloud-
native Hybrid Transactional and Analytical Processing (HTAP) database. In this paper, we present
PolarDB-IMCI, a cloud-native HTAP database deployed at Alibaba Cloud. We summarize the
crucial design goals of PolarDB-IMCI below, which are also applicable to the design of a general
cloud-native HTAP database.
• G#1: Transparent Query Execution. To serve mixed workloads in a single database, database
users should not be required to understand the working logic of the database, nor should they
identify query types manually. That is, users should not perceive two isolated systems (e.g.,
engines, indexes, interfaces, etc.) for OLAP and OLTP queries respectively. Our system should
provide a unified SQL interface for both OLAP and OLTP workloads.

• G#2: Advanced OLAP Performance. As a major goal of any HTAP database, the OLAP
performance (e.g., execution latency) of PolarDB-IMCI should be comparable to typical databases
specialized in processing OLAP queries (typically through the introduction of columnar data
storage).

• G#3: Minimal Perturbation on OLTP Workloads.While the performance of OLAP queries is
significantly improved, it should have a minimal negative impact on the performance of OLTP
queries. In fact, as we have practically validated in real application scenarios, OLTP queries are
usually more mission-critical and are more sensitive to performance degradation. This requires
effective resource isolation for OLTP and OLAP queries.

• G#4: High Data Freshness. High data freshness is an important property of HTAP databases,
which is a distinguishing advantage compared to the traditional Extract-Transform-Load (ETL)
method. In this paper, we follow earlier similar work [12, 28] using the visibility delay as a

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 199. Publication date: June 2023.

https://doi.org/10.1145/3589785

PolarDB-IMCI: A Cloud-Native HTAP Database System at Alibaba 199:3

OLTP DBMS
(e.g., MySQL)

OLAP DBMS
(e.g., ClickHouse)

ETL

REDO

HTAP DBMS
(PolarDB-IMCI)

QT T Q

Fig. 1. Comparison of ETL and PolarDB-IMCI.

freshness score for a query. By definition, the visibility delay is the time interval during which
updates to the database can be visible to OLAP queries.

• G#5: Excellent Resource Elasticity. In HTAP scenarios, the consumption of CPU/IO resources
fluctuates significantly, from hundreds to thousands of times. As a key feature of cloud-native
databases, our system should ensure high resource elasticity (e.g., scale-out in minutes or even
seconds) to adaptively serve the changing data volume and analytical workloads with stable
performance and high resource utilization.
PolarDB-IMCI meets all desired goals (i.e., G#1-5) with the following innovations. First, to meet

G#1 and G#2, we implemented in-memory column index (IMCI, §4) as complementary storage.
PolarDB-IMCI absorbs diverse advanced optimizations from the OLAP community and derives a
new SQL engine (§6.3) to match the execution mode on columns. Further, PolarDB-IMCI proposes a
new query routing mechanism (§6.1) that dispatches queries transparently.
Second, to meet G#3, PolarDB-IMCI resides column indexes on separated read-only (RO) nodes

(§3.1) with a shared storage architecture to provide effective resource isolation between OLTP and
OLAP requests. Updates are propagated to RO nodes by reusing REDO logs (§5.3) (i.e., the differential
logging for the row store) instead of shipping additional logical logs (i.e., MySQL Binlogs).

Third, to meet G#4, we enhance our update propagation framework with commit-ahead log ship-
ping (CALS, §5.1) and 2-Phase conflict-free log replay (2P-COFFER, §5.2). CALS ships transaction logs
before committing. 2P-COFFER efficiently parses and applies REDO logs to RO nodes. Furthermore,
we implemented the column index as append-only storage (§4): records are organized in insert
order rather than primary key order. Thus, updates to column indexes are performed out-place and
quickly.
Finally, to meet G#5, the checkpoint mechanism of the columnar index is seamlessly built into

PolarDB’s original storage engine. Therefore fast scale-out capability can be achieved by quickly
pulling up a RO node using the checkpoint on shared storage (§7).

We started the design and development of cloud-native PolarDB in 2017, and seek for an HTAP
solution (i.e., PolarDB-IMCI) in 2019. By now, PolarDB-IMCI is severing a large number of internal
and external customers (Table 3). The key contributions of this work are listed as follows:

• We propose PolarDB-IMCI, an HTAP solution for cloud-native relational database systems.
To the best of our knowledge, PolarDB-IMCI is the first cloud-native HTAP database to satisfy
all of the aforementioned design goals.

• We design an architecture that provides dual-format storage on read-only nodes under the
storage-computation separation architecture, which enables efficient execution of analytical
queries and minimizes the impact on OLTP load. Additionally, PolarDB-IMCI is the first
practical template to demonstrate that it is possible and applicable to implement replication
from row-store to dual-format storage with physical redo logs while reducing replication
latency to millisecond levels.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 199. Publication date: June 2023.

199:4 Jianying Wang et al.

• We evaluate PolarDB-IMCI with diverse experiments (in both experimental and production
environments). The experimental results show that PolarDB-IMCI outperforms row-based
PolarDB up to ×149 on a standard analytical workload TPC-H (100𝐺𝐵), and its performance is
comparable to the advanced OLAP databases (e.g., ClickHouse). Performance degradation on
OLTP is tiny (less than 5%), even when OLAP workloads increase continuously. The visibility
delay of PolarDB-IMCI at is <5𝑚𝑠 on typical workloads, and <30𝑚𝑠 under heavy workloads.
PolarDB-IMCI can scale out in tens of seconds.

The remainder of the paper is organized as follows. §2 introduces the background of HTAP
and cloud-native databases. §3 presents the architecture. PolarDB-IMCI’s components and update
propagation framework are introduced in §4 and §5 respectively. §6 discusses query dispatch,
optimization, and execution. §7 introduces the checkpoint mechanism. §8 details the experiments
and evaluation. §9 concludes the paper.

2 BACKGROUND AND RELATEDWORK
2.1 Hybrid Transactional/Analytical Processing
For long decades, OLTP and OLAP databases are dedicatedly designed for their respective work-
loads. For instance, OLTP engines (e.g., MySQL [41]) prefer row-based data formats, row-at-a-time
operators, and early materialization strategy, favoring data modification and point queries. On the
contrary, OLAP engines (e.g., ClickHouse [15]) use column-based data formats, batch-at-a-time
operators, and late materialization strategy, favoring scan-intensive analytical queries. As a result,
modern database administrators often need to deploy both OLTP and OLAP databases, and conduct
data shipping between two types of databases (e.g., ETL [51]).
The emergence of HTAP databases eliminates the burden of maintaining multiple databases

and simplifies data shipping. We classify existing HTAP solutions into two categories (i.e., single-
instance and multi-instance), and discuss each category below.
HTAP with Single Instance. SAP HANA [48] supports hybrid workloads by introducing a three-
tier merge tree, a layered in-memory store that supports both row and column formats. Oracle
Dual [31] allows relational tables to be built as In-Memory Column Units (IMCU) to provide fast
column scans. New updates to IMCUs are temporarily logged by metadata, and IMCUs can be
repopulated from the memory buffer when more updates are accumulated. Unlike Oracle Dual,
SQL Server CSI [33, 34] supports column stores with column store index (CSI) and periodically
merges new updates into CSI, thus eliminating rebuilding.

PolarDB-IMCI follows a similar principle, but pioneers this design to the cloud-native architecture
by addressing a number of key challenges as detailed in later sections.
HTAP with Multiple Instance. Another type of HTAP database utilizes replication techniques to
maintain multiple instances. Thus, transactional and analytical queries can be routed to different
instances to achieve efficient performance isolation. Further, each instance can tailor its architecture
to fit workloads.
A more recent work of SAP HANA proposes Asynchronous Table Replication (ATR) [35] for

data synchronization between the primary instance and replicas. Replication logs are supplied
asynchronously to replicas and are replayed in parallel in session granularity. Unlike ATR, Google
F1 Lightning [55] uses Change Data Capture (CDC), a more loosely coupled mechanism shuffling
data via BigTable. TiDB [28] uses Raft [42] to connect row-store engines (TiKV) and columnar
engines (TiFlash). TiFlash behaves as a Raft learner receiving logs asynchronously from the leader
and does not participate in the leader election. IBM DB2 Analytics Accelerator (IDAA) [6] maintains
a copy of row-based table data by integrated synchronization to support incremental updates. A
new version of Oracle Dual [44] supports offloading read-only workloads to homogeneous instances

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 199. Publication date: June 2023.

PolarDB-IMCI: A Cloud-Native HTAP Database System at Alibaba 199:5

(standby) and synchronizes data by REDO logs. ByteHTAP [12] uses disaggregated storage and
synchronizes heterogeneous engines (ByteNDB for OLTP and Apache Flink [18] for OLAP) by
Binlog. Different from these works, PolarDB-IMCI directly reuses REDO logs for heterogeneous
data replication. To the best of our knowledge, PolarDB-IMCI is the first industrial database using
physical logs to efficiently synchronize heterogeneous storage.
Additionally, several databases leverage shared storage for data synchronization. Wildfire [2]

is a Spark-compatible database. It uses SparkSQL as the engine for analytical processing. Data
updates are first committed to the local SSD and then moved asynchronously to its shared storage.
PolarDB-IMCI also adopts a shared storage (i.e., PolarFS [8]), but supports real-time synchronization.

2.2 Cloud-Native Database
The key technique of cloud-native databases is decoupling computation and storage. A typical
cloud-native database often adopts cloud storage underneath its storage engine, leveraging another
layer for virtualization and providing an elastic storage service [14]. Cloud-native architecture
benefits customers with high resource elasticity and an on-demand charging model and benefits
service providers by reducing maintenance and development costs.
Cloud-native OLTP/OLAP.Aurora [53, 54] is a cloud-native OLTP database deployed on a custom-
designed cloud storage layer. Taurus [23] also separates the compute and storage layers in a similar
manner but uses asymmetric replication based on separate persistence mechanisms for database
logs and pages.
Besides OLTP systems, OLAP databases also benefit from storage-disaggregation. Several con-

ventional data warehousing systems have adapted to the cloud (e.g., Vertica [32], Eon [50]), and
several OLAP databases are natively developed for the cloud (e.g., Snowfake [21], Redshift [26],
AnalyticDB [56]).
Cloud-native HTAP. SingleStore [45] takes the first step to make the HTAP database cloud-native.
It disaggregates computation and storage, and supports committing transactions on the local
disk of computation nodes and pushing data asynchronously to its blob storage. Different from
SingleStore, PolarDB-IMCI offloads all persisted data into the shared storage layer, thus all states of
the computation nodes can be rebuilt from shared storage directly, favoring recovery and elasticity.

3 OVERVIEW
In this section, we first outline the architecture of PolarDB-IMCI, then summarize the design
rationales driven by the aforementioned design goals, along with a brief description of the user
interface.

3.1 Architecture of PolarDB-IMCI
Figure 2 shows the architecture of PolarDB-IMCI, which follows the crucial design principle of
separating computation and storage architecture. The storage layer is a user-space distributed file
system called PolarFS [8] with high availability and reliability. The computation layer contains
multiple computation nodes, including a primary node for read/write requests (RW node), several
nodes for read-only requests (RO nodes), and several stateless proxy nodes for load balancing.
Given this, PolarDB-IMCI can provide high resource elasticity (§7). Furthermore, all nodes in both
storage and computation layers are connected by a high-speed RDMA network to achieve low
latency of data access.

To speed up analytical queries, PolarDB-IMCI supports building in-memory column indexes (§4)
on the row store of RO nodes. Column indexes store data in insertion order and perform out-place
writes for efficient updates. The insertion order means a row in column indexes that can be quickly

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 199. Publication date: June 2023.

199:6 Jianying Wang et al.

Shared Storage
（PolarFS）

Read-only ReplicaRead/Write Primary

Data
Chunk

Data
Chunk

Data
Chunk

Data
Chunk

Scale Out/In

Scale
Up/Down

SQL Engine

REDO

Transaction Exe.

Parser
Row-based Executor

Parser

W
rit

e

Buffer Pool Col. index

Application Layer

Database Proxy

RW CheckPoint
Buffer Pool

Transaction Exe.
P.K. Index

Optimizer Optimizer

 Vectorized Paralell Exe.Row Exe.

Sec. IndexP.K. Index Sec. Index

RO CheckpointREDO Applier
(§4)

(§5)

(§6)

(§7)

R
ead

Col. PlanRow Plan

SQL Engine

Storage EngineStorage Engine

Fig. 2. Cloud-native architecture of PolarDB-IMCI.

located by its Row-ID (RID) rather than its primary key (PK). To support PK-based point lookups,
PolarDB-IMCI implements a RID locator (i.e., a two-layer LSM tree) for PK-RID mapping.
PolarDB-IMCI uses an asynchronous replication framework (§5) for synchronization between

RO and RW. That is, updates to RO nodes are not included in the transaction commit path of the
RW to avoid the impact on the RW node. To enhance data freshness on RO nodes, PolarDB-IMCI
uses two optimizations on the log applying, the commit-ahead log shipping, and the conflict-free
parallel log replay algorithm. RO nodes are synchronized by REDO logs of the row store, which
causes very low perturbation on OLTP than other strawmen approaches (e.g., using Binlog). Note
that it’s nontrivial to apply physical logs into column indexes as the data format of the row store
and column index is heterogeneous.
Inside each RO node, PolarDB-IMCI uses two execution engines (§6): PolarDB’s regular row-

based execution engine to serve OLTP queries, and a new column-based batch mode execution
engine for the efficient running of analytical queries. The batch mode execution engine draws
on the techniques used by columnar databases to handle analytical queries, including a pipeline
execution model, parallel operators, and a vectorized expression evaluation framework. The regular
row-based execution engine with augmented optimizations can undertake the column engine’s
incompatible queries or point queries. PolarDB-IMCI’s optimizer automatically generates and
coordinates plans for both execution engines, which is transparent to the consumer.

3.2 Design Rationales
We highlight the design rationales of PolarDB-IMCI below, which may also apply to other cloud-
native HTAP databases.
Storage-Computation Separation. As a key design principle of cloud-native databases, the
storage-computation separation architecture enables adaptive compute resource provisioning
to shifting workloads without data movement, which has become a mainstream architecture
alternative. PolarDB-IMCI takes the decision to naturally match our design goal G#5 (high resource
elasticity).
Single RW Nodes with Multiple RO Nodes. As a practical design decision, single-writer archi-
tecture has been confirmed to have advanced write performance [53] and significantly reduce the
system complexity. We have observed that a single RW node is enough to serve 95% customers in

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 199. Publication date: June 2023.

PolarDB-IMCI: A Cloud-Native HTAP Database System at Alibaba 199:7

CREATE TABLE demo_table {
C1 INT(11) NOTNULL,
C2 INT(11) DEFULT NULL,
C3 INT(11) DEFULT NULL,
C4 INT(11) DEFULT NULL,
C5 LONGTEXT DEFULT NULL,
PRIMARY KEY(C1),
KEY SEC_INDEX(C2),
KEY COLUMN_INDEX(C3, C4, C5)
}

Fig. 3. A DDL creates a demo table with a primary key index on C1, a secondary index on C2, and column
indexes on column C3,C4,C5.

our business. With the design choice, all RO nodes have a consistent data view synchronized with
the RW node. Large OLAP queries are routed to RO nodes to enable efficient resource isolation and
the RO nodes can be quickly scaled out to serve surging OLAP queries, which follows the design
goal G#3 (minimal perturbation on OLTP) and G#5 (resource elasticity).
Hybrid Execution and Storage Engines inside RO Nodes. From the lessons in the OLAP
community, columnar data layout and vectorized batch execution are significant optimizations
for OLAP queries. However, it is not a wise decision for us to use an existing column-oriented
system (e.g., ClickHouse) to serve directly as RO nodes. There are two reasons for this. First, it is
time-consuming to achieve full compatibility between the RW node and RO nodes. In a cloud service
environment, even little incompatibility can be drastically amplified and overwhelm developers
given the huge customer volume. Second, pure column-oriented RO nodes are still inefficient for
point-lookup queries, which are classified as OLTP workloads. As a result, we started to design
a new column-based execution engine extending the original execution engine of PolarDB, to
satisfy the goal G#1 (transparency). The column-based execution engine is designed to meet G#2
(advanced OLAP performance). While the row-based execution engine handles incompatible and
point-lookup queries that the former cannot deal with. RO nodes have both column-based and
row-based execution and storage engines.
Dual-format RO Nodes Synchronized by Physical REDO Logs. With the architecture over the
shared storage, new RO nodes can be quickly started to serve surging read-only queries to meet
the design goal G#5, and can continuously apply REDO logs from the RW node to keep storage
fresh (i.e., G#4). However, synchronizing heterogeneous storage with the original physical logs
(i.e., REDO logs) is challenging as the logs are tightly coupled with the underlying data structures
(e.g., pages). Therefore, a strawman approach is letting the RW node record additional logical
logs (e.g., Binlog) for column-store. The drawback is significant: it triggers additional fsyncs when
committing a transaction, thus causing non-negligible performance perturbation on OLTP. Given
this, we dedicatedly designed a new synchronization method by reusing REDO and making up
logical operations from physical logs on RO nodes. It is feasible since PolarDB-IMCI maintains
both row-based buffer pool and column indexes on RO nodes. Logical operations can be regained
by the applying process on a row-based buffer pool. Our evaluation shows that the overhead of
reusing REDO logs is significantly lower than using Binlog.

3.3 User Interface
Column store in PolarDB-IMCI is exposed as a new index type: column index. Applications can
create a column index for a table on demand. As PolarDB-IMCI is fully compatible with MySQL,

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 199. Publication date: June 2023.

199:8 Jianying Wang et al.

applications can use the SQL statement withMySQL syntax to create a column index. An example is
shown in Figure 3. It creates a table with five columns, the primary key index is created on column
C1, a secondary index is created on column C2, and column indexes are created on columns C3, C4,
and C5.

In addition, to specify the columns included in column indexes when creating the table, applica-
tions may also use the ALTER statement to add a column index later. When applications execute
Data Definition Language (DDL) on a table with a large number of rows to add a column index.
The RO node will issue a consistent read on PolarDB-IMCI’s row store, scan the checkpoint, and
convert it to a column index in parallel. Note that adding column indexes in PolarDB-IMCI is an
online operation: the queries and DML operations on the table can process together while a DDL
operation is in progress. The changes made by concurrent DML operations will be recorded in a
buffer and applied to the new column index at the end of the process.

4 COLUMN INDEX STORAGE
This section dives into the column index store, a crucial part of PolarDB-IMCI for handling analytical
queries. PolarDB-IMCI supports row-based storage engines [14, 29] that are highly tuned for
transaction processing on cloud storage. However, row-based data formats are well known for
being inefficient to serve analytical queries. Inspired by pioneering industrial databases (e.g.,
Oracle [31], SQL Server [33]), PolarDB-IMCI implements a dual data format via in-memory column
indexes, to enhance OLAP functionality.

4.1 Data Organization of Column Index
As shown in Figure 4, column indexes in PolarDB-IMCI serve as complementary storage to the
existing row store. In PolarDB-IMCI, columns of a table can selectively be involved in a column
index. PolarDB-IMCI divides all rows of a table into multiple row groups with append-only writes
to improve the write performance. In a row group, each column of data is organized into a data Pack,
along with some metadata for statistics. To provide snapshot isolation, each row group contains an
insert Version Id (VID) map, and a delete VID map to control the visibility for concurrent transaction
processing. Since the row groups are append-only, deletes require an explicit row id for the given
primary key to set the delete version for that row. To realize it, PolarDB-IMCI implements a Row-ID
locator (i.e., a two-layered LSM tree) to map the primary key to the physical position of the row in
the column index.
Data Pack Layout. A relational table is first divided into multiple row groups with configurable
size (i.e., 64K rows per row groups), and the left rows form a partial row group (e.g., Row Group N
in Figure 4). To realize fast data ingestion, row groups are append-only (§4.2). That is, the full-sized
row groups are immutable, and partial row groups will be fulfilled in an append-only manner. The
data belonging to the same column within a row group is organized as a Data Pack in a compressed
format to reduce space consumption. Note that PolarDB-IMCI does not compress Partial Packs as
they are updated continuously.
Pack Meta. To avoid unnecessary data access during query execution, PolarDB-IMCI maintains
a Pack meta for each Data Pack. The Pack meta keeps track of minimum and maximum values
as well as a sampling histogram for each Pack, which benefits column scan. For instance, when a
query statement specifies a WHERE clause predicate, Pack meta for the referenced column can be
used to check whether the scan on this Pack can be skipped.
RID Locator. As the data in Packs is stored in its insertion order, PolarDB-IMCI relies on a locator
to map primary keys to their corresponding physical locations in column indexes. In PolarDB-IMCI,
each row is assigned an increasing and unique Row-ID (RID) by its insertion order. Then, the RID
locator records the mapping of Key-Values pairs (i.e., <Primary Key, RID>). Delete operations rely

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 199. Publication date: June 2023.

PolarDB-IMCI: A Cloud-Native HTAP Database System at Alibaba 199:9

In-Memory Column IndexBuffer
Pool

Change
Buffer

REDO
Insert VID Map

Delete VID Map
0 1 01 1 0 0 1 0

RID Locator

M
et

ad
at

a

Update
<P.K.>

Two-layer
LSM-Tree

<P.K., RID, <Cols>>
Update

Col.#1
Data
Pack

Col.#2
Data
Pack

Col.#M
Data
Pack

Shared Storage (PolarFS) Row Group 1~ N -1

Row Group N

1

2 RID
NewOld

RID

3

4

5

Min
Max
Sum

Count

Pack Statistics

Null Cnt.
Dis. Cnt.6

7

Fig. 4. This diagram shows how data is updated in IMCI storage (i.e., step ①∼⑦). For simplicity, both delete
and insert operations are performed in the last column data Pack (i.e., partial Packs). “RID” means row id.
“VID” means version id.

on the locator to find the physical position of records. PolarDB-IMCI uses a two-layered LSM tree
for the RID locator. Compared to other data structures, the LSM tree helps the locator achieve
near-optimal memory utilization and easily extends to disks.
Version Id (VID) Map. PolarDB-IMCI uses Multi-Version Concurrency Control (MVCC) to provide
consistent data views. For column indexes, updating a record is appending a new version of this
record to the tail of Partial Packs. The old version of the record is logically deleted by marking it
with a timestamp. Each version has a 64-bit insert VID and a delete VID, recording the timestamps
of the appending and deleting of this version, respectively. A read transaction determines a version
is visible by checking its timestamp is within the range of the insert VID and the delete VID. All
insert (delete) VIDs in a row group form an insert (delete) VID map.

4.2 DML Operation on Data Packs
To better understand the process flow on data Packs, we now describe how to conduct DML
operations on the data structure of column indexes.

• Insert: Inserting a row into a column index consists of the following four steps. First, the column
index allocates an empty RID from its Partial Packs. Second, the locator updates the new RID by
the primary key for the inserted row (i.e., add a new record into the LSM tree). Then, the column
index writes row data into the empty slot (e.g., data Packs within the Row Group N in Figure 4).
Finally, the insert VID records the transaction committed sequence number (i.e., timestamp) of
the inserted data. Since the insert VID map maintains the insert version of each inserted data, it
also follows the append-only write pattern.

• Delete: The delete operation retrieves a row’s RID via the RID locator by its primary key (PK)
and then sets the corresponding delete VID with its transaction committed sequence number.
After that, the mapping between the PK and RID is removed from the locator to ensure data
consistency.

• Update: As shown in Figure 4, an update on the column index is performed as a delete operation
followed by an insert operation. The updated version of a row is appended to Partial Packs, and
the old version is logically deleted from its original data Pack (i.e., set the delete VID to max
value).

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 199. Publication date: June 2023.

199:10 Jianying Wang et al.

As a result, column indexes are arranged in insertion order with fast data ingestion. Another
significant benefit of out-place updates is that it avoids the contention for modification of the same
row (§5.4).

4.3 Data Pack Compression and Compaction
Compression. A Partial Pack is transformed into a Pack when it reaches its maximum capacity
and then compressed into disks to reduce space consumption. The compression process is carried
out with a copy-on-write pattern to avoid access contentions. That is, a new Pack is generated to
hold the compressed data, with no changes to the Partial Pack. PolarDB-IMCI updates the metadata
after compression to replace the Partial Pack with the new Pack (i.e., atomically updating the
pointer to the new Pack). For the various data types, column indexes employ different compression
algorithms. Numerical columns adopt the combination of frame-of-reference, delta-encoding, and
bit-packing compression, and string columns use dictionary compression.

Additionally, since Packs are immutable, the insert VID map of that Pack is useless when active
transactions are greater than all VIDs, i.e., no active transactions refer to the insert VID map. In
such cases, PolarDB-IMCI removes the insert VID maps in row groups to reduce memory footprint.
Compaction. Delete operations may set delete VIDs in a Pack, which punches holes for that
Pack. As the number of invalid rows increases over time, the scan performance and the space
efficiency degrade. PolarDB-IMCI periodically detects and re-arranges under-flowing Packs to
keep a low waterline for invalid rows of column indexes. For example, sparse Packs, with less
than half of the valid rows, are picked as under-flowing. Then the background threads issue a
compaction transaction, which includes numerous update operations, one for each migrated valid
row, to re-append all valid rows of picked Packs into Partial Packs. Recall that the update operations
of column indexes are out-place, so the old rows are still accessible for foreground operations
during or even after the compactions, which enables non-blocking updates. The picked Packs after
compactions will be permanently removed when no active transaction accesses them.

5 UPDATE PROPAGATION
In this section, we describe our efforts for synchronizing heterogeneous data storage. Minimal
perturbation on OLTP is a high-priority goal for PolarDB-IMCI. To achieve this goal, update
propagation in PolarDB-IMCI is implemented by REDO logs, eliminating the overhead for RW to
persist additional logical logs. On top of REDO logging, PolarDB needs to keep RO nodes as up-to-
date as possible for data freshness. For this purpose, we introduce Commit-Ahead Log Shipping
(CALS) to reduce visible delay and 2-Phase COnFlict-Free parallEl Replay (2P-COFFER) mechanism
to improve replay throughput.

5.1 Commit-Ahead Log Shipping
To minimize performance perturbation, in PolarDB-IMCI, updates to RO nodes are fully asynchro-
nous without affecting RW transaction commits. Given this, to enhance data freshness, PolarDB-
IMCI uses the CALS technique, which ships logs before transaction committing. As illustrated
in Figure 5, a transaction consists of multiple log entries:

the last entry is a commit or an abort log, whereas the ones before it is DML logs. Each log entry
is assigned a log sequence number (LSN). For example, the transaction with TID 101 has three
log entries with LSN 300 ∼ 302. Log entries 300 and 301 are DMLs. Log entry 302 contains the
decisions on the transaction (i.e., abort).
After the RW node writes a log entry to the shared storage (i.e., PolarFS), it notifies RO nodes

by broadcasting its up-to-date LSN (299 in our example). When receiving LSNs, RO reads logs

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 199. Publication date: June 2023.

PolarDB-IMCI: A Cloud-Native HTAP Database System at Alibaba 199:11

RW Node

101 Status -> Abort
... (DML 1)102

Transaction Buffer

... (DML 2)102

Tid Differential Log
100 Status -> Commit

... (DML 1)101

... (DML 2)101

Shared Storage
(PolarFS)

Tid Status
98 Commit

Commit99

Logical Operation
<Delete, Tab. A, P.K.>

<Update, Tab. B, Col. 2, P.K., "2" -> "1">

Pending100 <Insert, Tab. B, Tuple>

IMCI Store

CALS
(§5.1)

Parse Log
(§5.3)

RO Node

Thread Pool

302
303
304

LSN
299
300
301

...

...

...

...

...

...

...

 Apply DML
(§5.4)

Fig. 5. An overview of REDO Log shipping. Logs are shipped from RW node to RO node by shared storage.

from PolarFS immediately. Each DML log is then parsed into a DML statement and stored in a
transaction buffer based on its TID (one buffer unit per transaction).
The whole process does not require waiting for the RW node to commit the transaction. For

example, the DMLs in the transaction with TID 100 will ship before the log entry 299 (final commit).
When the RO node reads a commit log entry, the earlier DML statements are already parsed and
delivered as logical operations in the transaction buffer, allowing PolarDB-IMCI to replay the DMLs
immediately. When reading an abort log entry, RO simply frees the transaction buffer and no data
need to be rolled back.

5.2 Two-Phase Conflict-Free Parallel Replay
As mentioned previously, PolarDB-IMCI does not generate additional logical logs for update
propagation but reuses REDO logs. The reason is that log delivery makes the RW node write more
log entries, which affects OLTP performance. However, for a significant period, it is regarded as
almost impossible to synchronize heterogeneous storage with REDO logs [35]. There are three
challenges to this. (1) REDO logs only record changes to physical pages in the row store and lack
database-level or table-level information [43] (e.g., RO nodes do not know which table the page
change corresponds to). (2) Page changes caused by the row store itself rather than user DMLs
are also included in REDO logs, such as B+tree splits/merges and page consolidations. Column
indexes cannot apply these logs, otherwise, inconsistencies may occur. (3) REDO logs only include
differences rather than complete updates to reduce log volume.
As shown in Figure 6, PolarDB-IMCI addresses these challenges with two replay phases. The

Phase#1 is to replay REDO logs to an in-memory copy of the row store in RO. In this phase,
PolarDB-IMCI captures the complete information to parse REDO logs into logical DML statements.
Then, the Phase#2 is to replay DML statements to column indexes.

The performance of replay is critical to our system. To achieve high performance, several parallel
replay mechanisms [6, 46, 47, 55] are proposed in the literature. These works either take parallel
replay at session granularity or transaction granularity with the help of conflict-handling aids,
such as locks or dependency graphs, or optimistic control. Unlike these works, PolarDB-IMCI
proposes a new replay approach, 2P-COFFER, to make both phases of parallel replay conflict-free.
In 2P-COFFER, the Phase#1 is page-grained, while the Phase#2 is row-grained to enable the
concurrent modification of different pages/rows. With 2P-COFFER, the replay throughput of RO
nodes is much higher than the OLTP throughput of RW (§8.4).

5.3 Phase#1: Physical Log Parse
As shown in Figure 7, a REDO log entry of PolarDB contains multiple fields. For simplicity, we take
the update operation as an example, and other sorts of operations are similar.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 199. Publication date: June 2023.

199:12 Jianying Wang et al.

T1 DML 1-1 (Insert 1, "A")
DML 1-2 (Insert 2, "D")

DML 2-1 (Update 2, "B")
DML 2-2 (Insert 3, "C")T2

DML
 Dispacher

T1T2

 1-22-1

 1-12-2

Parallel Reply
Worker

Hash(Key) mod N

IMCI Store
1 Update Locator
2 Update Data Packs
3 Batch Commit

Batch#1

Txn Buffer W1

W2

Phase#2Phase#1

Hash(PageID) mod N

Parallel Reply
Worker

W1

W2

Log
 Dispacher

Row-based Buffer Pool

Make Up&Transform
LSN: 100～200

Sort by LSN &

Fig. 6. This diagram shows PolarDB-IMCI’s Two-Phase Conflict-Free Parallel Replay (2P-COFFER). In the
first phase, REDO logs are parallelly replayed to the row-based buffer pool, parsed to logical DMLs, sorted,
and made up to form transactions. In the second phase, DMLs (inside each transaction) are processed in
batches. DMLs are dispatched based on their primary keys and update column indexes parallelly.

LSN PrevLSN TID PageID

Record Type SlotID
Size of Differential Log

Differential Log

Fig. 7. REDO Log Format.

• TID is the transaction identifier that creates this entry.
• LSN represents the order of this entry in the log.
• PageID identifies which physical page the row updated by this entry belongs to. The Offset
field (SlotID) further determines where the updated row sits on the page.

• Data field (Differential Log) contains the difference between the updated value and the
original value.

In the left part of Figure 6, Phase#1 distributes REDO logs to different workers based on the
PageID. The distribution process is similar to Phase#2 (§5.4) but at page granularity. Then, each
worker replays its logs in the LSN order to reproduce the DML details. For an update-type log entry,
the worker will generate a delete DML and an insert DML during replay since column indexes are
updated out-place. The differential field of REDO logs may not contain PK information, which is
required for deleting DMLs (find a row via the locator). Therefore, the worker gets the old row from
PolarFS based on the PageID and offset field, and uses the old row’s PK to assemble a delete-type
DML. Then, the worker applies the differential field into the extracted rows to replay page changes,
and assemble the insert DML after applying. To truly make up an operation into a logical DML, each
operation must also be supplemented with its table schema. Workers get table schema information
by table IDs recorded on pages.
Furthermore, workers must identify log entries generated by the row store itself (e.g., B+tree

splits). These logs should not be assembled into DMLs. To handle this, workers first check whether
a log entry belongs to an active transaction by the TID. If not, this entry is confirmed as not being
generated by a user transaction. If so, the worker further checks if the PK of this entry is repeatedly
inserted in the active transaction (via a PK set). Note that a duplicate PK insert is not a user DML.
Consequently, reusing REDO forces a replay of all page changes. As an optimization, PolarDB-

IMCI let RO nodes maintain the buffer pool of the row store like RW to reduce the amount of data
page reads.
In our practice, the computing capacity of Phase#1 is much greater than the log production

capacity of RW. On the one hand, RO nodes directly reproduce page changes without the overhead of
redoing transactions, such as B+tree traversals. On the other hand, REDO logs under real workloads
always act on hot pages so that the buffer pool has a hit rate close to 99%. Although the buffer pool
reduces the memory available for OLAP, we take this tradeoff because reducing the perturbation
on OLTP through REDO logs is a higher priority in our scenario.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 199. Publication date: June 2023.

PolarDB-IMCI: A Cloud-Native HTAP Database System at Alibaba 199:13

5.4 Phase#2: Logical DML Apply
REDO logs’ LSN order ensures the fundamental prerequisite for log replay, which means changes
to RO nodes can be made in the same order as RW. Phase#1 breaks this order. Therefore, after
the parse, a background thread will sort DMLs according to the LSN of their associated log entries.
Then, the background thread inserts DMLs into transaction buffer units based on their TID.

In Phase#2, a dispatcher distributes a batch of transactions to multiple workers, performing
modifications to column indexes in parallel. The distribution is conducted row-by-row, and DML
statements from a single transaction will be dispatched to multiple workers for replay. For a DML
statement, the dispatcher assigns a specified worker by taking a modulo of the hash value of the
row’s primary key. Therefore, DML statements that modify the same row are assigned to the same
worker in the commit order, even if they belong to different transactions. The dispatcher processes
each transaction in the commit order, ensuring that different modifications to the same row are
delivered to the same worker in order, which guarantees consistency. Each worker follows the
steps described in §4.2 to replay each DML statement in order, and changes will be committed to
column indexes in batch.

The right part of Figure 6 illustrates how two workers (𝑊1 and𝑊2) can replay two transactions
(𝑇1 and 𝑇2) simultaneously. 𝑇1 Insert (1, “𝐴”) and Insert (2, “𝐷”) respectively. 𝑇2 Update (2, “𝐵”) and
Insert (3, “𝐶”). Insert (2, “𝐷”) and Update (2, “𝐵”) are assigned to𝑊2 with the commit order of 𝑇1
and 𝑇2.𝑊1 executes these two DMLs in sequence without concurrent conflicts.

5.5 Handle Large Transactions
So far, we have presented the update propagation of PolarDB-IMCI, but there is one more issue.
As stated in §5.1, CALS prefetches log entries from PolarFS into transaction buffer units before
Phase#2. Therefore, if a transaction comprises too many DMLs, its transaction buffer unit may
consume a huge memory.

To avoid excessive memory consumption, PolarDB-IMCI pre-commits large transactions: DML
statements in a transaction buffer unit are pre-committed when their number reaches a given thresh-
old. The basic idea behind pre-committing is to write updates to Partial Packs with invalid insert
and delete VIDs, rendering the updates temporarily invisible. The specific steps of pre-committing
are as follows. First, request a continuous RID range for all rows in the current transaction buffer
unit, and save this RID range. It is important to note that the global RID locator cannot yet be
changed during the pre-commit phase to avoid the exposure of uncommitted transactions. Thus,
PolarDB-IMCI creates a temporary RID locator instead of updating the RID global locator to cache
new PK-to-RID mappings. Then, PolarDB-IMCI writes the updates to Partial Packs while setting the
insert and delete VIDs as invalid to make them invisible. Finally, PolarDB-IMCI frees the memory
used by the transaction buffer unit.

When the large transaction commits, PolarDB-IMCI merges the temporary RID locator into the
global RID locator and rectifies the invalid VIDs (in the saved RID range) with the transaction
commit sequence number. Otherwise, if the large transaction aborts, the temporary locator will be
cleaned out. Pre-commit rows remaining in Partial Packs are invalid and will be eliminated later by
compaction threads in the background.

6 ANALYTICAL PROCESSING
6.1 TransparentQuery Routing
In PolarDB-IMCI, queries can be executed on different nodes and different execution engines via
a cost-based routing protocol. The routing process is completely transparent to applications and
users and has a two-levels policy: inter-node routing and intra-node routing. Inter-node routing

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 199. Publication date: June 2023.

199:14 Jianying Wang et al.

SELECT FROM A* INNER JOIN INNER JOIN B ON A.col1 = B.col1 C ON A.col2 = C.col1

Optimizer

Row-based
Cost Model

Plan
Enumeration

Cardinality
Estimation

SQL Parser

Low Cost

C
B A

Plan

Vectorized Parallel ExecutorRow-based Executor

High
Cost IMCI Plan

Generator
SIMD

Failed

Fig. 8. The workflow of PolarDB-IMCI’s optimizer.

implements read/write flow splitting (with load balance) through the proxy layer, while intra-node
routing provides a dynamic selection of data access paths and execution engines (either row-based
or column-based) through the optimizer.
Inter-node Routing. PolarDB-IMCI’s proxy provides a unified SQL interface for all application
requests (both OLTP and OLAP). When requests come in, the proxy directs read/write requests
(e.g., transactions) to the RW node and directs read-only queries (e.g., analytical queries) to RO
nodes via a rough syntax parser. If multiple RO nodes are deployed, the proxy will balance the
traffic based on the number of active sessions.
Intra-node Routing. As shown in Figure 8, PolarDB-IMCI implements two execution engines
within each RO node. A row-based execution engine for point queries and a column-based execution
engine for analytical queries. The optimizer of PolarDB-IMCI selects the appropriate execution
engine for each query based on row-based cost estimation. By assuming that all queries can
preferentially run in the row-based execution engine (i.e., low cost), the optimizer generates a
row-oriented execution plan first. If the estimated cost of the row-oriented plan exceeds a threshold
(i.e., high cost), a column-oriented plan will be generated and used over the column-based engine.
The issue of intra-node routing is essentially a result of PolarDB using two executors. We leave the
development of a new row-column hybrid cost model and hybrid execution as our future work.

6.2 IMCI Plan Generation
Instead of top-down constructing a column-oriented execution plan, PolarDB-IMCI transforms it
from the row-oriented one. The transform workflow is shown in Figure 8. By doing so, column-
oriented plans can preserve all behavioral characteristics.

For instance, in PolarDB-IMCI, implicit type casts of a column-oriented plan are always consistent
with the row-oriented plan. During the plan generation, PolarDB-IMCI transforms the original
expressions into a vectorized execution format to exploit SIMD instructions. This transformation is
handled inside the expression objects (e.g., Item class in MySQL) and strictly follows up on original
implicit type casts. Another instance is that column-oriented plans reuse error codes and messages
from row-oriented plans. It is challenging to align errors across different execution engines. In
PolarDB-IMCI, Column-oriented plans can retain static error detection directly from row-oriented
ones to avoid this issue. For run-time errors, PolarDB-IMCI will fall back the execution to be
row-oriented. As a result, PolarDB-IMCI achieves strong compatibility with the existing framework
of MySQL.
Due to the differences between execution engines, column-oriented plans benefit less from

following the join order of row plans. Thus, the optimizer further optimizes the join order after
constructing a column-oriented plan. PolarDB-IMCI uses DPhyp [40] as the join ordering algorithm,
which can efficiently handle various types of joins, including outer-joins and anti-joins. To provide
accurate cardinality estimation for the optimizer, PolarDB-IMCI collects statistics through random

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 199. Publication date: June 2023.

PolarDB-IMCI: A Cloud-Native HTAP Database System at Alibaba 199:15

sampling. Sampling tasks will be performed periodically in the background. Furthermore, PolarDB-
IMCI adaptively adopts various sampling methods [10, 11, 27] to make statistics efficient and
accurate.

6.3 Execution Engine
To obtain advanced OLAP performance, PolarDB-IMCI designs a new high-performance analytical
execution engine (i.e., column-based engine). Drawing on the knowledge of in-memory columnar
databases [4, 25, 36], the analytical engine incorporates numerous state-of-the-art technologies,
including a pipeline execution model, a set of well-optimized parallel operators, and a vectorized
expression evaluation framework.
• Pipeline Execution. The execution tree of a vectorized execution plan is decomposed into
multiple linear paths called pipelines. In a pipeline, a non-blocking operator (e.g., Filter, Join
Probe) processes one batch at a time instead of all data, and then passes the intermediate result to
the next operator. Pipeline execution brings several advantages: (1). a batch of data that streams
through multiple operators is always cached; (2). intermediate results are reduced to minimize
the memory footprint.

• Parallel Operators. To parallelize each pipeline, all operators in the analytical engine support
parallel execution. For example, TableScan can concurrently fetch Data Packs in a non-interleaved
manner, and the analytical engine implements Join as a lock-free partition Join [1]. Furthermore, to
reduce cache misses, blocking operators use carefully designed data structures (e.g.,cache-friendly
hash tables [3]) and software prefetching [13] as much as possible. Besides, all blocking operators
have an optimized spill-to-disk version to handle out-of-memory crises, such as dynamic hybrid
hash Join [30].

• Expression Evaluation.When a batch of data is cached, the performance bottleneck is switched
from memory access to CPU computation. SIMD instructions, sometimes known as vectorized
instructions, such as AVX-512, are powerful for accelerating CPU computation. Thus, an expres-
sion evaluation framework [38] is decoupled from operators to serve compute-intensive modules
in a vectorized manner (i.e., using SIMD).

6.4 Strong Consistency
Since PolarDB-IMCI uses an asynchronous replication mechanism, analytical queries may observe
stale data. For example, an analytical query may not read the updates that have already been
committed in the RWnode. However, it is possible for PolarDB-IMCI to achieve multiple consistency
levels through the proxy layer to meet the requirement of applications, including strong consistency.
The proxy keeps track of the RW node’s written LSN and all RO nodes’ applied LSN. The

written LSN and applied LSN indicate the transaction commit point for RW and RO, respectively.
Transactions before the written LSN were committed on the RW node. Likewise, any log entries
before the applied LSN are guaranteed to have been replayed by the RO node. The proxy may only
route queries to the RO nodes whose applied LSN is not less than the written LSN to meet the
requirements of strong consistency.

7 RESOURCE ELASTICITY
One of the core design concepts behind PolarDB-IMCI is to realize on-demand node provisioning
with a storage-computation separation architecture. In this section, we dive into the node scale-out
mechanism in PolarDB-IMCI.

Likemost in-memory database systems [25, 31], PolarDB-IMCI periodically stores column indexes
in shared storage as checkpoints to provide fast recovery after a system crash. More specifically,

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 199. Publication date: June 2023.

199:16 Jianying Wang et al.

in PolarDB-IMCI, new scale-out RO nodes can quickly construct their memory structures with
checkpoints. In our implementation, the roles of RO nodes are divided into one leader and multiple
followers. A leader is in charge of issuing checkpoints, while followers maintain their own memory
structures, and leverage the checkpoints for fast recovery. The role assignment is centrally controlled
by RW. When start-up, RW designates the first RO node in the cluster as an RO leader, and other
RO nodes are followers. If the leader crashes, RW will re-designate one of the followers to be the
new leader.

To take a checkpoint, the leader identifies the latest committed transaction sequence number as
the Checkpoint Sequence Number (CSN). The transactions committed after the CSN are excluded
in the checkpoint to enable a consistent data view between RO nodes. A major challenge is to
ensure that the checkpointing tasks never stall the foreground log replay. However, checkpointing
tasks may be stained when the log replay is in progress. Recall that there are three important
in-memory structures (the RID locator, Packs, and VID maps) in RO nodes, and all of them should
be coordinated with checkpoints. Addressing the challenge, PolarDB-IMCI handles each of them
by the following steps.

• Packs in PolarDB-IMCI are append-only and immutable, which means the persistence timing of
Packs is independent of checkpoints. Hence, Packs on the leader are written into PolarFS as soon
as they are created. Visibility is controlled by VID maps.

• VID maps require a more careful design. Firstly, PolarDB-IMCI generates a copy of VID maps on
the leader and parallelly checks all elements in the copy. If VIDs exceed the CSN, the elements in
VID maps will be marked as invalid. Then, the visibility controlled by VID maps is aligned with
the CSN and the copy can be persisted into PolarFS.

• RID locator splits a new immutable copy for checkpoints tasks by functional data structures [24].
Therefore, Subsequent transactions will not stain the checkpoint. Meanwhile, to prevent active
transactions from leaving residues on the old view, checkpoints are only triggered when the
memtable of the LSM tree is filled.

When adding a new RO node, PolarDB-IMCI first checks whether there is an available checkpoint
of column indexes in PolarFS. If so, it loads the checkpoint and performs fast recovery; otherwise,
it rebuilds column indexes from the row store. When starting from a checkpoint, RO nodes load
the locator and VID maps into memory first. Regarding Packs, RO nodes use a lazy loading way.
Only Packs accessed by queries are loaded into memory to reduce scale-out time. After that, the RO
node replays the log entries after the checkpoint to catch up with the RO leader. During catching
up, the RO node is able to serve queries with poor freshness. The poor freshness lasts only a short
time. The experiments in §8.5 show that scaling out a RO node takes tens of seconds.

8 EVALUATION
8.1 Evaluation Setup
Configurations. The experimental evaluation was carried out on a PolarDB-IMCI cluster (mmx8.4
xlarge) in the Alibaba Cloud platform. Except for the scale-out experiment, we used two computation
nodes, one read/write (RW) node and one read-only (RO) node. The scale-out experiment was
conducted by adding RO nodes, thus consuming more than two nodes. The computation nodes are
attached to a PolarFS volume which can provide nearly unlimited capacity. We used one ECS server
(c7.8xlarge) on Alibaba Cloud as HTAP clients to issue SQL requests. The detailed configurations
can be found in Table 1.
Benchmarks. To emulate diverse application scenarios and analyze the performance of PolarDB-
IMCI systematically, we used three well-studied and widely-used benchmarks.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 199. Publication date: June 2023.

PolarDB-IMCI: A Cloud-Native HTAP Database System at Alibaba 199:17

Table 1. Configurations of our evaluation.

RW/RO Node 32 vCPU, 1 NUMA node
256 𝐺𝐵 DRAM

Client 32 vCPU
64 𝐺𝐵 DRAM

OS Alibaba Group Enterprise Linux Server release 7.2
Network 10Gbit/s Bandwidth

PolarFS 288000 IOPS (RandRead 16KB)
18000 IOPS (SeqWrite 128KB)

TPC-H [20] is adopted to evaluate the performance of PolarDB-IMCI in executing analytical
queries. We used 100𝐺𝐵 and 1𝑇𝐵 of data volume, and reported the running time of each query. We
also reported the geometric mean of all 22 queries, as suggested in the TPC-H official document.

We used CH-benCHmarks [17] to evaluate PolarDB-IMCI’s performance under hybrid workloads.
It integrates TPC-H queries into TPC-C [19] with a unified data schema. We reported the OLTP
and OLAP throughput and studied the performance isolation property with a scale fact (i.e., the
number of data warehouses) = 100.
To provide a more in-depth analysis of PolarDB-IMCI’s micro component, sysbench [49] is

used for pressure tests with diverse workload patterns. We set insert-only and write-only (update)
workloads with Zipfian distribution. The database contains 100 tables using 64-bit integers as
primary keys and 188 bytes per record.
We ran each experiment 10 times and reported the average number. Results were collected in

the middle of each experiment to avoid the disturbance caused by system start-up and cool-down.
Our evaluation focused on the following questions:

§8.2 What is the overall performance of PolarDB-IMCI?
§8.4 Can PolarDB-IMCI achieve high data freshness?
§8.3 How does PolarDB-IMCI handle update propagation?
§8.5 Can PolarDB-IMCI achieve high resource elasticity when OLAP workloads increase?
§8.6 How does PolarDB-IMCI benefit real-world applications in production deployment?

8.2 Overall Performance
OLAP-only workloads. Achieving advanced OLAP performance (i.e., G#2) in an HTAP system is
one of the foremost motivations of PolarDB-IMCI. In this evaluation, we compared the TPC-H query
execution time of PolarDB-IMCI’s column execution engine, its row execution engine (referred
to as row-based PolarDB), and ClickHouse (an advanced OLAP system). For an apple-to-apple
comparison, we built secondary indexes for each column in row-based PolarDB to maximize its
performance. ClickHouse does not support PolarFS. To make a fair comparison with ClickHouse,
PolarDB-IMCI was also configured to use local disks in this experiment. Currently, ClickHouse
does not offer enough support for join reordering [16]. To evaluate the performance of execution
engines separately, in the 1 𝑇𝐵 experiment, we manually adjusted the join order of ClickHouse to
the same as PolarDB-IMCI. Queries are executed one by one, and all systems used 32 threads for
intra-query parallelism.

Figure 9 shows the results. With 100𝐺𝐵 data, PolarDB-IMCI achieved×5.56 speed-ups (in geomet-
ric mean) compared to row-based PolarDB, and up to ×149.12 speed-ups for scan-intensive queries
(e.g., 𝑄10, 𝑄15). With 1 𝑇𝐵 data, the speed-ups are ×12.15 in geometric mean. The performance
gain came from two folds: first, PolarDB-IMCI serves scan operations on column granularity, which

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 199. Publication date: June 2023.

199:18 Jianying Wang et al.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22 Gmean
0

10

20

30

40

50

60

70

E
xe

cu
ti

on
T

im
e

(s
)

3.
84

2.
15

2.
52

1.
73 3.
22

0.
46 5.

92

5.
29

18
.9

1

3.
78

3.
19

1.
34 5.

61

1.
66

2.
12

2.
24 3.
63 9.

6

1.
7

1.
13

14
.6

6

0.
9 2.
945.
24

3.
62

4.
15

1.
94

8.
71

0.
23

33
.4

4

11
.7

2

47
.5

5

4.
64

1.
22

1.
62

56
.2

7

1.
51

0.
69

1.
22 5.

72

6.
5

6.
22

1.
51

1.
73 3.
88

48
.6

0.
53

29
.1

9

5.
02

22
.9

3

9.
07

31
.6

4.
17

25
.1

4

11
.1

2

6.
98

26
.3

4

16
.9

8

11
.1

9

2.
01

42
.9

5

34
.2

4

1.
02

16
.6

5

80.81 74.07 127.52 316.25 *

PolarDB-IMCI ClickHouse (v22.10) Row-based PolarDB

(a) 100𝐺𝐵

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22 Gmean
0

100

200

300

400

500

E
xe

cu
ti

on
T

im
e

(s
)

65
.7

4

27
.9

6

45
.2

4

36
.5

1 84
.4

0.
42 46

.4
5

63
.1

7

22
9.

29

77
.0

8

6.
86 21

.4
5

62
.6

6

10
.5

19
.4

9

28
.0

2

57
.7

1

25
3.

34

60
.9

3

10
.1

7

21
3.

75

10
.2

3

34
.370

35
.0

1

52
.5

73

25
.9

8 80
.1

8.
31

69
.8

2

11
3.

58

21
1.

05

66
.0

5

22
.1

33
.5

2 11
5.

92

16
.6

7

15
.3

2

11
.8

1

21
2.

42

15
8.

46

94
.6

6

19
.8

3

29
.5

6

46
.5

4

12
.5

3

24
2.

98 31
8.

27

30
8.

15

28
3.

74

31
4.

29

27
7.

12

14
4.

78

30
3.

21

64
.4

6

23
.7

6

41
7.

08

612.5 1169.8 500.6 600.5 690.3 2550.2 1277.7 2369.7 4698.7 * *3952.4

* means running out of memory (OOM)

(b) 1𝑇𝐵

Fig. 9. Comparison of PolarDB-IMCI, PolarDB, and ClickHouse on TPC-H. All systems used 32 threads for
intra-query parallelism.

minimizes read amplification caused by full table scan (§4); second, PolarDB-IMCI implements
parallel operators, batch iteration, and SIMD optimizations to speed query processing on the large
data volume (§6). One may find 𝑄2 interesting: PolarDB-IMCI underperformed on such queries.
This was because the selectivity of 𝑄2 was low, and indexes built in row-based PolarDB were more
efficient to handle point queries. However, thanks to our optimizer (§6.1), in practice, PolarDB-IMCI
can automatically route such queries to their desirable execution engine.
Compared to ClickHouse, PolarDB-IMCI outperformed or was competitive with it on most

queries. Overall, PolarDB-IMCI achieved ×1.32 speed-ups on 100𝐺𝐵 data and ×1.35 speed-ups on 1
𝑇𝐵 data. PolarDB-IMCI incurred longer execution time on a small specific set of queries (e.g., 𝑄11,
𝑄18). To the best of our knowledge, this is caused by different implementation details in operators
and memory management.

In summary, PolarDB-IMCI’s OLAP performance is much better than row-based PolarDB and is
comparable to ClickHouse.
HTAPworkloads.We test PolarDB-IMCI’s performance on hybridworkloadswith CH-benCHmarks
(§8.1). The results in Figure 10 show that PolarDB-IMCI has effective resource isolation. Following
the standard [47], we evaluate PolarDB-IMCI in two rounds. First, we used 512 OLTP clients to
saturate OLTP throughput (i.e., tune the number of clients to use 80% of CPU resources), and
increased OLAP clients to issue analytical queries. As Figure 10a demonstrated, PolarDB-IMCI can
perform at most 186890 tpmC (TPC-C NewOrder transactions per minute) and 2916 QphH (TPC-H
query per hour) simultaneously, and the performance throughput degradation of OLTP is low (less
than 1%). Second, we changed the roles of OLTP and OLAP, and let OLTP workloads increase after
OLAP throughput was saturated. PolarDB-IMCI indeed incurred a little throughput degradation
on OLAP throughput (<20%). We conclude this degradation for two reasons: (1). OLTP workloads
enlarged the table size of some tables, thus higher OLTP throughput may degrade more OLAP
performance; (2). the number of invalid rows in Packs increased with higher OLTP throughput. It
validates our design choice of building column indexes on separated RO nodes.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 199. Publication date: June 2023.

PolarDB-IMCI: A Cloud-Native HTAP Database System at Alibaba 199:19

2 4 6 8 10 12 14 16
Number of AP Clients

0

50

100

150

200
O

LT
P

T
pu

t
(k

tp
m

C
)

0

2000

4000

OLTP Throughput

OLAP Throughput

(a) Perf. isolation of OLTP

0 1000 2000 3000 4000
Number of TP Clients

0

50

100

150

O
L

A
P

T
pu

t
(k

Q
ph

H
)

0

1

2

3

4

5

OLTP Throughput

OLAP Throughput

(b) Perf. isolation of OLAP

Fig. 10. Isolated OLTP and OLAP Performance of PolarDB-IMCI on CH-benCHmark Workloads. These two
sub-figures share the same y-axis.

4 8 16 32 64 128 256 512 1024
Number of OLTP clients (s)

0

10

20

30

40

50

60

70

O
LT

P
T

pu
t

L
os

s

-2
.4

%

-4
.8

%

-0
.5

%

-2
.2

%

-1
.0

%

-2
.0

%

-3
.7

%

-3
.2

%

-1
.5

%

-2
3.

9%

-2
6.

8%

-2
4.

9% -3
2.

3%

-3
4.

8% -4
1.

0%

-4
4.

5% -5
6.

3%

-3
9.

9%

Reuse REDO Use Binlog

Fig. 11. Effectiveness of reusing REDO logs for updates propagation on sysbench write-only workload. The
OLTP Throughput Loss is calculated by comparing PolarDB without IMCI.

We omit the comparison between PolarDB-IMCI and other transactional databases because the
OLTP performance of PolarDB-IMCI strictly follows the performance of PolarDB [8, 9]. PolarDB-
IMCI achieved good performance isolation between workloads (see Figure 10) and the overhead of
enabling IMCI is low (see Figure 11).

8.3 Performance Perturbation
Then, we examine how the update propagation affects PolarDB’s OLTP performance. Recall that
minimal perturbation on OLTP (i.e., G#3) is pivotal to our consumers’ experience. We design this
experiment based on the sysbench insert-only workload, and calculated the throughput loss by
comparing the throughput of candidate methods to the original throughput without IMCI (i.e.,
PolarDB with only row-based read-only replica). We started the experiment with an empty table and
warmed up for 10 seconds. Figure 11 shows the results. Compared to using Binlog, PolarDB-IMCI’s
updates propagation methods (i.e., reusing REDO log) caused minimal performance perturbation
to OLTP. The overhead of using Binlog was significantly higher because Binlog incurred additional
fsyncs and more log IO. One may consider the drawback of reusing REDO is that PolarDB-IMCI
has to parse physical logs to logical logs. However, it does not cause a bottleneck in log replay, as
validated in our experiment (§8.4).

8.4 Data Freshness
Data freshness (i.e., G#4) is critical to the quality of analytical results. We evaluated data freshness
by visibility delay (VD), which is the time taken for an update committed on an RW node to be

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 199. Publication date: June 2023.

199:20 Jianying Wang et al.

min
50%

90%
95%

99%
99.9%

99.99%
99.999%

Percent (%)

0

10

20

30
V

is
ib

ili
ty

D
el

ay
(m

s) 128 threads

256 threads

512 threads

1024 threads

Fig. 12. VD on TPC-C.

0 10 20 30 40 50 60
Number of Threads

0

100

200

300

400

T
hr

ou
gh

pu
t

(k
op

s)

MAX RW Tput

Update Locator

Update Data Packs

Replay on Row-store

Fig. 13. Replay Performance.

Time (s)

10
15
20
25
30
35

O
L

A
P

T
pu

t
(q

ue
ri

es
/s

)

Scale-out
RO Node 1

Scale-out
RO Node 2

Service
available.

Service
available.

Cluster OLAP Tput

0 50 100 150 200 250 300 350 400
Time (s)

0

2

4

6

8

L
S

N
D

el
ay

×108

Scale-out No.1 Done Scale-out No.2 Done

LSN Delay of No.1

LSN Delay of No.2

Fig. 14. Resource Elasticity on TPC-H

readable on RO nodes [12, 28]. Figure 12 provides the results of VD at different percentiles on
TPC-C workloads with data warehouses = 100. PolarDB-IMCI achieved low visibility delay for
three reasons: first, CALS (§5.1) minimized the update propagation window; second, the updates
on column indexes are out-place and lightweight (§4.1); third, RDMA-equipped PolarFS reduced
the shipping time.
Effectiveness of parallel replay. To provide additional support for the claim that components
of column indexes should never be the bottleneck, we tested each component of PolarDB-IMCI
individually, and report the maximum throughput on each component with varying threads.
During the experiment, we used 512 OLTP clients to saturate OLTP throughput on the TPC-C
workload and achieved 1934.97𝑡𝑝𝑠 (i.e., 116098𝑡𝑝𝑚𝐶) throughput. Figure 13 shows the results.
The maximum throughput of updating the RID locator and data Packs is much higher than the
maximum throughput of OLTP on the RW node (×30.2 to ×61.3). Besides, replaying REDO logs on
a row-based buffer pool is not the bottleneck. We also test the maximum throughput of physical
log parsing (per thread) and committing. The throughputs are ∼34𝑘 and ∼459𝑘 respectively, which
is also significantly higher.

8.5 Resource Elasticity
The desiderata on resource elasticity (i.e., G#5) drives our cloud-native implementation. To test
the elasticity of PolarDB-IMCI, we used sysbench insert-only workloads with 3900 insertions per
second (188 bytes per record) for the TP workload and TPC-H 𝑄6 for the AP workload.
To scale out (i.e., add new RO nodes), PolarDB-IMCI relies on the checkpoints technique (§7)

for a fast start-up. Figure 14 shows the results. We added the first new RO node into the cluster at

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 199. Publication date: June 2023.

PolarDB-IMCI: A Cloud-Native HTAP Database System at Alibaba 199:21

Table 2. Production workloads. The table describes different customer workload patterns.

Workload DB Size Tables Max Table Size Avg.# cols Queries Avg.# joins Avg.# ops per plan
Cust1 2595.9 𝐺𝐵 997 393.3 𝐺𝐵 11.2 96 2.0 9.7
Cust2 163.2 𝐺𝐵 165 17.3 𝐺𝐵 27.2 311 1.3 10.0
Cust3 736.2 𝐺𝐵 681 91.5 𝐺𝐵 29.9 105 1.7 9.9
Cust4 47.8 𝐺𝐵 153 5.6 𝐺𝐵 13.5 106 9.0 41.9

Table 3. Distribution of queries at different IMCI speed-ups.

Speed-ups Cust1 Cust2 Cust3 Cust4
[1, 2) 55% 67% 5% 0%
[2, 5) 12% 13% 5% 0%
[5, 10) 9% 5% 16% 1%
[10, 100) 23% 13% 28% 42%
[100, inf) 1% 2% 46% 57%

Q1 Q2 Q3 Q4 Q5
Queries

100

101

102

103

104

E
xe

cu
ti

on
T

im
e

(s
)

1.79 1.22

5.05
2.56

0.35

16.64 20.69

710.33 911.14

69.4

W/ IMCI W/o IMCI

0

100

200

300

400

500

S
p

ee
du

ps

(a) Cust1: Finance

Q1 Q2 Q3 Q4 Q5
Queries

100

101

102

103

E
xe

cu
ti

on
T

im
e

(s
)

0.52 0.5

5.16

0.47

4.24

11.23 10.81

60.56

3.04

131.7

W/ IMCI W/o IMCI

0

10

20

30

40

50

S
p

ee
du

ps

(b) Cust2: Logistics

Q1 Q2 Q3 Q4 Q5
Queries

100

101

102

103

104

E
xe

cu
ti

on
T

im
e

(s
)

0.17

1.38
2.71

72.12 78.23
22.67

76.75 109.71

1821 1895

W/ IMCI W/o IMCI

0

50

100

150

200

S
p

ee
du

ps

(c) Cust3: Video Marketing

Q1 Q2 Q3 Q4 Q5
Queries

100

101

102

103

E
xe

cu
ti

on
T

im
e

(s
)

0.32 0.45
1.03

5.73 5.1
7.67 7.3

13.02

232.21 241.68

W/ IMCI W/o IMCI

0

20

40

60

80
S

p
ee

du
ps

(d) Cust4: Gaming

Fig. 15. Speedups achieved by PolarDB-IMCI on representative queries. The left y-axis is in the log scale.

114s. It took 10s for PolarDB-IMCI to build in-memory components from the checkpoints. At 124s,
when the newly added RO node (i.e., No.1) was able to serve the new incoming OLAP requests,
the proxy server balanced the traffic and started new sessions to No.1. Thus, the cluster’s OLAP
throughput increased incrementally (see the top part of Figure 14). However, at the beginning of
the start-up, the LSN delay of No.1 was extremely high (see the bottom part of Figure 14) since
the new node still needed to catch up on updates committed after the checkpoint. Thanks to our
high-performance updates propagation framework, No.1 could catch up to the latest state in a
short time (9s). At 133s, No.1 could behave as a normal RO node to serve OLAP requests. We then
added another new RO node (i.e., No.2) to the cluster at 257s. No.2 was able to provide services at
268s and could catch up to the latest at 276s. Notably, No.2 took less time to catch up to RW than

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 199. Publication date: June 2023.

199:22 Jianying Wang et al.

0 200 400 600 800 1000 1200 1400
Time (mins)

0

5

10

15

20

25

V
is

ib
ili

ty
D

el
ay

(m
s)

PolarDB-IMCI Visibility Delay

Fig. 16. Visibility Delay in real-world workloads.

No.1 since No.2 started from the next round checkpoint. Overall, PolarDB-IMCI achieved strong
elasticity: it takes tens of seconds to scale out.

8.6 Performance of Production Deployment
In the last experiment, we studied PolarDB-IMCI’s performance on several real-world customer
workloads in a production environment. These workloads represent four diverse real-time applica-
tions where HTAP is highly desirable, i.e., finance, logistics, video marketing, and online gaming.
Table 2 reports some aggregate statistics about the schema of these workloads. Generally, these
customer workloads represent complex query patterns over diverse data schemas and database sizes.
Table 3 shows the distribution of speed-ups achieved by PolarDB-IMCI compared to row-based
PolarDB. Typically, PolarDB-IMCI can provide a faster speedup for more complex queries (i.e., those
involving more joins and operations), such as Cust3 and Cust4. Additionally, Figure 15 shows the
representative queries. We also calculated the speed-ups, which were shown on the right y-axis. In
summary, the experimental results revealed that column indexes can result in orders of magnitude
performance gains for slow SQL queries.
We then monitored the visibility delay between RW and RO nodes. The results are shown in

Figure 16. During 24 hours, the visibility delay was changed with the customer’s OLTP throughput
and was always <20𝑚𝑠 .

9 CONCLUSION
This paper present PolarDB-IMCI, a cloud-native HTAP database that achieves advanced OLAP
performance with minimal perturbation on OLTP, and optimized visibility delay for better data
freshness. PolarDB-IMCI adopts in-memory column indexes as complementary storage to speed up
analytical queries, and introduced two key technologies for efficiency update propagation, i.e., CALS
and 2P-COFFER. In addition, PolarDB-IMCI leverages checkpoints on shared storage to enhance fast
computation resources scale-out. PolarDB-IMCI also absorbed excellent optimizations for complex
query processing, and proposed a new query optimization flow. Our evaluation results show that
PolarDB-IMCI can handle hybrid workloads efficiently in both experimental and productional
environments.

ACKNOWLEDGMENTS
PolarDB-IMCI owes a great deal to our customers, whose feedback and suggestions were instru-
mental in the design of its architecture. We gratefully acknowledge the contributions of Ming Zhao,
XuDong Wu, HuaWei Xue, and Shuai Jiang to the development of PolarDB-IMCI. Additionally, we
extend heartfelt gratitude to the anonymous reviewers whose valuable comments greatly improved
this paper.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 199. Publication date: June 2023.

PolarDB-IMCI: A Cloud-Native HTAP Database System at Alibaba 199:23

REFERENCES
[1] Cagri Balkesen, Jens Teubner, Gustavo Alonso, and M. Tamer Özsu. 2013. Main-memory hash joins on multi-core

CPUs: Tuning to the underlying hardware. In 29th IEEE International Conference on Data Engineering, ICDE 2013,
Brisbane, Australia, April 8-12, 2013. IEEE Computer Society, 362–373.

[2] Ronald Barber, Matt Huras, Guy Lohman, C Mohan, Rene Mueller, Fatma Özcan, Hamid Pirahesh, Vijayshankar Raman,
Richard Sidle, Oleg Sidorkin, et al. 2016. Wildfire: Concurrent blazing data ingest and analytics. In Proceedings of the
2016 International Conference on Management of Data. 2077–2080.

[3] Ronald Barber, Guy M. Lohman, Ippokratis Pandis, Vijayshankar Raman, Richard Sidle, Gopi K. Attaluri, Naresh
Chainani, Sam Lightstone, and David Sharpe. 2014. Memory-Efficient Hash Joins. Proc. VLDB Endow. 8, 4 (2014),
353–364.

[4] Peter A. Boncz, Marcin Zukowski, and Niels Nes. 2005. MonetDB/X100: Hyper-Pipelining Query Execution. In Second
Biennial Conference on Innovative Data Systems Research, CIDR 2005, Asilomar, CA, USA, January 4-7, 2005, Online
Proceedings. www.cidrdb.org, 225–237.

[5] Dhruba Borthakur, Jonathan Gray, Joydeep Sen Sarma, Kannan Muthukkaruppan, Nicolas Spiegelberg, Hairong Kuang,
Karthik Ranganathan, Dmytro Molkov, Aravind Menon, Samuel Rash, Rodrigo Schmidt, and Amitanand Aiyer. 2011.
Apache Hadoop Goes Realtime at Facebook. In Proceedings of the 2011 ACM SIGMOD International Conference on
Management of Data (SIGMOD ’11). Association for Computing Machinery, New York, NY, USA, 1071–1080.

[6] Dennis Butterstein, Daniel Martin, Knut Stolze, Felix Beier, Jia Zhong, and Lingyun Wang. 2020. Replication at the
speed of change: a fast, scalable replication solution for near real-time HTAP processing. Proceedings of the VLDB
Endowment 13, 12 (2020), 3245–3257.

[7] Shaosheng Cao, XinXing Yang, Cen Chen, Jun Zhou, Xiaolong Li, and Yuan Qi. 2019. TitAnt: Online Real-Time
Transaction Fraud Detection in Ant Financial. Proc. VLDB Endow. 12, 12 (aug 2019), 2082–2093.

[8] Wei Cao, Zhenjun Liu, Peng Wang, Sen Chen, Caifeng Zhu, Song Zheng, Yuhui Wang, and Guoqing Ma. 2018. PolarFS:
An ultralow latency and failure resilient distributed file system for shared storage cloud database. Proceedings of the
VLDB Endowment 11, 12 (2018), 1849–1862.

[9] Wei Cao, Yingqiang Zhang, Xinjun Yang, Feifei Li, Sheng Wang, Qingda Hu, Xuntao Cheng, Zongzhi Chen, Zhenjun
Liu, Jing Fang, Bo Wang, Yuhui Wang, Haiqing Sun, Ze Yang, Zhushi Cheng, Sen Chen, Jian Wu, Wei Hu, Jianwei Zhao,
Yusong Gao, Songlu Cai, Yunyang Zhang, and Jiawang Tong. 2021. PolarDB Serverless: A Cloud Native Database for
Disaggregated Data Centers. In SIGMOD ’21: International Conference on Management of Data, Virtual Event, China,
June 20-25, 2021. ACM, 2477–2489.

[10] Surajit Chaudhuri, Gautam Das, and Utkarsh Srivastava. 2004. Effective Use of Block-Level Sampling in Statistics
Estimation. In Proceedings of the ACM SIGMOD International Conference on Management of Data, Paris, France, June
13-18, 2004. ACM, 287–298.

[11] Surajit Chaudhuri, Rajeev Motwani, and Vivek R. Narasayya. 1998. Random Sampling for Histogram Construction:
How much is enough?. In SIGMOD 1998, Proceedings ACM SIGMOD International Conference on Management of Data,
June 2-4, 1998, Seattle, Washington, USA. ACM Press, 436–447.

[12] Jianjun Chen, Yonghua Ding, Ye Liu, Fangshi Li, Li Zhang, Mingyi Zhang, Kui Wei, Lixun Cao, Dan Zou, Yang Liu,
et al. 2022. ByteHTAP: bytedance’s HTAP system with high data freshness and strong data consistency. Proceedings of
the VLDB Endowment 15, 12 (2022), 3411–3424.

[13] Shimin Chen, Anastassia Ailamaki, Phillip B. Gibbons, and Todd C. Mowry. 2004. Improving Hash Join Performance
through Prefetching. In Proceedings of the 20th International Conference on Data Engineering, ICDE 2004, 30 March - 2
April 2004, Boston, MA, USA. IEEE Computer Society, 116–127.

[14] Zongzhi Chen, Xinjun Yang, Feifei Li, Xuntao Cheng, Qingda Hu, Zheyu Miao, Rongbiao Xie, Xiaofei Wu, Kang Wang,
Zhao Song, et al. 2022. CloudJump: optimizing cloud databases for cloud storages. Proceedings of the VLDB Endowment
15, 12 (2022), 3432–3444.

[15] Inc. ClickHouse. 2022. ClickHouse — open source distributed column-oriented DBMS. https://github.com/ClickHouse/
ClickHouse/tree/22.6.

[16] Inc. ClickHouse. 2023. ClickHouse — Roadmap 2023. https://github.com/ClickHouse/ClickHouse/issues/44767.
[17] Richard L. Cole, Florian Funke, Leo Giakoumakis, Wey Guy, Alfons Kemper, Stefan Krompass, Harumi A. Kuno,

Raghunath Othayoth Nambiar, Thomas Neumann, Meikel Poess, Kai-Uwe Sattler, Michael Seibold, Eric Simon, and
Florian Waas. 2011. The mixed workload CH-benCHmark. In Proceedings of the Fourth International Workshop on
Testing Database Systems, DBTest 2011, Athens, Greece, June 13, 2011. ACM, 8.

[18] Apache Community. 2023. Apache Flink. https://flink.apache.org/.
[19] THE TRANSACTION PROCESSING COUNCIL. 2014. TPC-C. http://www.tpc.org/tpcc/.
[20] THE TRANSACTION PROCESSING COUNCIL. 2023. TPC-H. http://www.tpc.org/tpch/.
[21] Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin Avanes, Jon Bock, Jonathan Claybaugh,

Daniel Engovatov, Martin Hentschel, Jiansheng Huang, et al. 2016. The snowflake elastic data warehouse. In Proceedings

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 199. Publication date: June 2023.

https://github.com/ClickHouse/ClickHouse/tree/22.6
https://github.com/ClickHouse/ClickHouse/tree/22.6
https://github.com/ClickHouse/ClickHouse/issues/44767
https://flink.apache.org/
http://www.tpc.org/tpcc/
http://www.tpc.org/tpch/

199:24 Jianying Wang et al.

of the 2016 International Conference on Management of Data. 215–226.
[22] Lei Deng, Jerry Gao, and Chandrasekar Vuppalapati. 2015. Building a Big Data Analytics Service Framework for Mobile

Advertising and Marketing. In First IEEE International Conference on Big Data Computing Service and Applications,
BigDataService 2015, Redwood City, CA, USA, March 30 - April 2, 2015. IEEE Computer Society, 256–266.

[23] Alex Depoutovitch, Chong Chen, Jin Chen, Paul Larson, Shu Lin, Jack Ng, Wenlin Cui, Qiang Liu, Wei Huang, Yong
Xiao, et al. 2020. Taurus database: How to be fast, available, and frugal in the cloud. In Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data. 1463–1478.

[24] James R Driscoll, Neil Sarnak, Daniel D Sleator, and Robert E Tarjan. 1989. Making data structures persistent. Journal
of computer and system sciences 38, 1 (1989), 86–124.

[25] Franz Färber, Norman May, Wolfgang Lehner, Philipp Große, Ingo Müller, Hannes Rauhe, and Jonathan Dees. 2012.
The SAP HANA Database – An Architecture Overview. IEEE Data Eng. Bull. 35, 1 (2012), 28–33.

[26] Anurag Gupta, Deepak Agarwal, Derek Tan, Jakub Kulesza, Rahul Pathak, Stefano Stefani, and Vidhya Srinivasan.
2015. Amazon redshift and the case for simpler data warehouses. In Proceedings of the 2015 ACM SIGMOD international
conference on management of data. 1917–1923.

[27] Peter J Haas and Lynne Stokes. 1998. Estimating the number of classes in a finite population. J. Amer. Statist. Assoc. 93,
444 (1998), 1475–1487.

[28] Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu Ma, Fei Xu, Li Shen, Liu Tang, Yuxing Zhou, Menglong Huang,
et al. 2020. TiDB: a Raft-based HTAP database. Proceedings of the VLDB Endowment 13, 12 (2020), 3072–3084.

[29] Gui Huang, Xuntao Cheng, Jianying Wang, Yujie Wang, Dengcheng He, Tieying Zhang, Feifei Li, Sheng Wang, Wei
Cao, and Qiang Li. 2019. X-engine: An optimized storage engine for large-scale e-commerce transaction processing.
In Proceedings of the ACM SIGMOD International Conference on Management of Data. Association for Computing
Machinery, 651–665.

[30] Shiva Jahangiri, Michael J. Carey, and Johann-Christoph Freytag. 2022. Design Trade-offs for a Robust Dynamic Hybrid
Hash Join. Proc. VLDB Endow. 15, 10 (2022), 2257–2269.

[31] Tirthankar Lahiri, Shasank Chavan, Maria Colgan, Dinesh Das, Amit Ganesh, Mike Gleeson, Sanket Hase, Allison
Holloway, Jesse Kamp, Teck-Hua Lee, et al. 2015. Oracle database in-memory: A dual format in-memory database. In
2015 IEEE 31st International Conference on Data Engineering. IEEE, 1253–1258.

[32] Andrew Lamb, Matt Fuller, Ramakrishna Varadarajan, Nga Tran, Ben Vandiver, Lyric Doshi, and Chuck Bear. 2012.
The Vertica Analytic Database: C-Store 7 Years Later. Proc. VLDB Endow. 5, 12 (2012), 1790–1801.

[33] Per-Åke Larson, Adrian Birka, Eric N Hanson, Weiyun Huang, Michal Nowakiewicz, and Vassilis Papadimos. 2015.
Real-time analytical processing with SQL server. Proceedings of the VLDB Endowment 8, 12 (2015), 1740–1751.

[34] Per-Åke Larson, Cipri Clinciu, Eric N Hanson, Artem Oks, Susan L Price, Srikumar Rangarajan, Aleksandras Surna,
and Qingqing Zhou. 2011. SQL server column store indexes. In Proceedings of the 2011 ACM SIGMOD International
Conference on Management of data. 1177–1184.

[35] Juchang Lee, SeungHyun Moon, Kyu Hwan Kim, Deok Hoe Kim, Sang Kyun Cha, and Wook-Shin Han. 2017. Parallel
replication across formats in SAP HANA for scaling out mixed OLTP/OLAP workloads. Proceedings of the VLDB
Endowment 10, 12 (2017), 1598–1609.

[36] Viktor Leis, Peter A. Boncz, Alfons Kemper, and Thomas Neumann. 2014. Morsel-driven parallelism: a NUMA-aware
query evaluation framework for the many-core age. In International Conference on Management of Data, SIGMOD 2014,
Snowbird, UT, USA, June 22-27, 2014. ACM, 743–754.

[37] Guoliang Li, Haowen Dong, and Chao Zhang. 2022. Cloud Databases: New Techniques, Challenges, and Opportunities.
Proc. VLDB Endow. 15, 12 (2022), 3758–3761.

[38] Meng Li, Zheyu Miao, Di Wu, Feifei Li, Sheng Wang, Wei Cao, Zhi Qiao, Yubin Ruan, Yukun Liang, Jimmy Yang,
Haipeng Dai, and Guihai Chen. 2023. ROVEC: Runtime Optimization of Vectorized Expression Evaluation for Column
Store. IEEE Trans. Knowl. Data Eng. 35, 3 (2023), 3045–3058.

[39] Gilad Mishne, Jeff Dalton, Zhenghua Li, Aneesh Sharma, and Jimmy Lin. 2013. Fast data in the era of big data: Twitter’s
real-time related query suggestion architecture. In Proceedings of the 2013 ACM SIGMOD International Conference on
Management of Data. 1147–1158.

[40] Guido Moerkotte and Thomas Neumann. 2008. Dynamic programming strikes back. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, SIGMOD 2008, Vancouver, BC, Canada, June 10-12, 2008.
ACM, 539–552.

[41] MySQL. 2019. MySQL 8.0.18 (2019-10-14, General Availability). https://dev.mysql.com/doc/relnotes/mysql/8.0/en/news-
8-0-18.html.

[42] Diego Ongaro and John Ousterhout. 2014. In search of an understandable consensus algorithm. In 2014 USENIX Annual
Technical Conference (Usenix ATC 14). 305–319.

[43] Oracle. 2018. Database-Level Supplemental Logging. https://docs.oracle.com/database/121/SUTIL/GUID-D2DDD67C-
E1CC-45A6-A2A7-198E4C142FA3.htm.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 199. Publication date: June 2023.

https://dev.mysql.com/doc/relnotes/mysql/8.0/en/news-8-0-18.html
https://dev.mysql.com/doc/relnotes/mysql/8.0/en/news-8-0-18.html
https://docs.oracle.com/database/121/SUTIL/GUID-D2DDD67C-E1CC-45A6-A2A7-198E4C142FA3.htm
https://docs.oracle.com/database/121/SUTIL/GUID-D2DDD67C-E1CC-45A6-A2A7-198E4C142FA3.htm

PolarDB-IMCI: A Cloud-Native HTAP Database System at Alibaba 199:25

[44] Sukhada Pendse, Vasudha Krishnaswamy, Kartik Kulkarni, Yunrui Li, Tirthankar Lahiri, Vivekanandhan Raja, Jing
Zheng, Mahesh Girkar, and Akshay Kulkarni. 2020. Oracle database in-memory on active data guard: Real-time
analytics on a standby database. In 2020 IEEE 36th International Conference on Data Engineering (ICDE). IEEE, 1570–1578.

[45] Adam Prout, Szu-Po Wang, Joseph Victor, Zhou Sun, Yongzhu Li, Jack Chen, Evan Bergeron, Eric N. Hanson, Robert
Walzer, Rodrigo Gomes, and Nikita Shamgunov. 2022. Cloud-Native Transactions and Analytics in SingleStore.
In SIGMOD ’22: International Conference on Management of Data, Philadelphia, PA, USA, June 12 - 17, 2022. ACM,
2340–2352.

[46] Vijayshankar Raman, Gopi Attaluri, Ronald Barber, Naresh Chainani, David Kalmuk, Vincent KulandaiSamy, Jens
Leenstra, Sam Lightstone, Shaorong Liu, Guy M Lohman, et al. 2013. DB2 with BLU acceleration: So much more than
just a column store. Proceedings of the VLDB Endowment 6, 11 (2013), 1080–1091.

[47] Sijie Shen, Rong Chen, Haibo Chen, and Binyu Zang. 2021. Retrofitting High Availability Mechanism to Tame Hybrid
Transaction/Analytical Processing. In 15th {USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 21). 219–238.

[48] Vishal Sikka, Franz Färber, Wolfgang Lehner, Sang Kyun Cha, Thomas Peh, and Christof Bornhövd. 2012. Efficient
transaction processing in SAP HANA database: the end of a column store myth. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, SIGMOD 2012, Scottsdale, AZ, USA, May 20-24, 2012. ACM, 731–742.

[49] SysBench. 2023. SysBench. https://github.com/akopytov/sysbench.
[50] Ben Vandiver, Shreya Prasad, Pratibha Rana, Eden Zik, Amin Saeidi, Pratyush Parimal, Styliani Pantela, and Jaimin

Dave. 2018. Eon Mode: Bringing the Vertica Columnar Database to the Cloud. In Proceedings of the 2018 International
Conference on Management of Data, SIGMOD Conference 2018, Houston, TX, USA, June 10-15, 2018. ACM, 797–809.

[51] Panos Vassiliadis. 2009. A survey of extract–transform–load technology. International Journal of Data Warehousing
and Mining (IJDWM) 5, 3 (2009), 1–27.

[52] Alejandro Vera-Baquero, Ricardo Colomo-Palacios, and Owen Molloy. 2016. Real-time business activity monitoring
and analysis of process performance on big-data domains. Telematics and Informatics 33, 3 (2016), 793–807.

[53] Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Murali Brahmadesam, Kamal Gupta, Raman Mittal, Sailesh
Krishnamurthy, Sandor Maurice, Tengiz Kharatishvili, and Xiaofeng Bao. 2017. Amazon Aurora: Design Considerations
for High Throughput Cloud-Native Relational Databases. In Proceedings of the 2017 ACM International Conference on
Management of Data, SIGMOD Conference 2017, Chicago, IL, USA, May 14-19, 2017. ACM, 1041–1052.

[54] Alexandre Verbitski, Anurag Gupta, Debanjan Saha, James Corey, Kamal Gupta, Murali Brahmadesam, Raman Mittal,
Sailesh Krishnamurthy, Sandor Maurice, Tengiz Kharatishvilli, et al. 2018. Amazon aurora: On avoiding distributed con-
sensus for i/os, commits, and membership changes. In Proceedings of the 2018 International Conference on Management
of Data. 789–796.

[55] Jiacheng Yang, Ian Rae, Jun Xu, Jeff Shute, Zhan Yuan, Kelvin Lau, Qiang Zeng, Xi Zhao, Jun Ma, Ziyang Chen, et al.
2020. F1 Lightning: HTAP as a Service. Proceedings of the VLDB Endowment 13, 12 (2020), 3313–3325.

[56] Chaoqun Zhan, Maomeng Su, Chuangxian Wei, Xiaoqiang Peng, Liang Lin, Sheng Wang, Zhe Chen, Feifei Li, Yue Pan,
Fang Zheng, and Chengliang Chai. 2019. AnalyticDB: Real-time OLAP Database System at Alibaba Cloud. Proc. VLDB
Endow. 12, 12 (2019), 2059–2070.

[57] Jun Zhou, Xiaolong Li, Peilin Zhao, Chaochao Chen, Longfei Li, Xinxing Yang, Qing Cui, Jin Yu, Xu Chen, Yi Ding, and
Yuan Alan Qi. 2017. KunPeng: Parameter Server Based Distributed Learning Systems and Its Applications in Alibaba
and Ant Financial. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD ’17). Association for Computing Machinery, New York, NY, USA, 1693–1702.

Received November 2022; revised February 2023; accepted March 2023

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 199. Publication date: June 2023.

https://github.com/akopytov/sysbench

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Hybrid Transactional/Analytical Processing
	2.2 Cloud-Native Database

	3 Overview
	3.1 Architecture of PolarDB-IMCI
	3.2 Design Rationales
	3.3 User Interface

	4 Column Index Storage
	4.1 Data Organization of Column Index
	4.2 DML Operation on Data Packs
	4.3 Data Pack Compression and Compaction

	5 Update Propagation
	5.1 Commit-Ahead Log Shipping
	5.2 Two-Phase Conflict-Free Parallel Replay
	5.3 Phase#1: Physical Log Parse
	5.4 Phase#2: Logical DML Apply
	5.5 Handle Large Transactions

	6 Analytical Processing
	6.1 Transparent Query Routing
	6.2 IMCI Plan Generation
	6.3 Execution Engine
	6.4 Strong Consistency

	7 Resource Elasticity
	8 EVALUATION
	8.1 Evaluation Setup
	8.2 Overall Performance
	8.3 Performance Perturbation
	8.4 Data Freshness
	8.5 Resource Elasticity
	8.6 Performance of Production Deployment

	9 Conclusion
	Acknowledgments
	References

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 36.41, 7.62 Width 26.12 Height 15.83 points
 Origin: bottom left

 1
 0
 BL

 12
 CurrentPage
 12

 CurrentAVDoc

 36.4106 7.6177 26.1207 15.8307

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 24
 25
 24
 1

 1

 HistoryList_V1
 qi2base

