
Optimizing Quantum Programs against Decoherence
Delaying Qubits into Quantum Superposition

Yu Zhang∗, Haowei Deng, Quanxi Li, Haoze Song and Leihai Nie

School of Computer Science and Technology

University of Science and Technology of China, Hefei, 230027,China

Email: ∗yuzhang@ustc.edu.cn, {jackdhw,crazylqx,shz666,nlh}@mail.ustc.edu.cn

Abstract—Quantum computing technology has reached a sec-
ond renaissance in the last decade. However, in the NISQ era
pointed out by John Preskill in 2018, quantum noise and decoher-
ence, which affect the accuracy and execution effect of quantum
programs, cannot be ignored and corrected by the near future
NISQ computers. In order to let users more easily write quantum
programs, the compiler and runtime system should consider
underlying quantum hardware features such as decoherence. To
address the challenges posed by decoherence, in this paper, we
propose and prototype QLifeReducer to minimize the qubit
lifetime in the input OpenQASM program by delaying qubits
into quantum superposition. QLifeReducer includes three core
modules, i.e.,the parser, parallelism analyzer and transformer. It
introduces the layered bundle format to express the quantum
program, where a set of parallelizable quantum operations is
packaged into a bundle. We evaluate quantum programs before
and after transformed by QLifeReducer on both real IBM Q
5 Tenerife and the self-developed simulator. The experimental
results show that QLifeReducer reduces the error rate of a
quantum program when executed on IBMQ 5 Tenerife by 11%;
and can reduce the longest qubit lifetime as well as average qubit
lifetime by more than 20% on most quantum workloads.

I. INTRODUCTION

Quantum computing technology has reached a second re-

naissance in recent a decade. In May of 2016, IBM has made a

5-qubit superconducting chip available in the cloud to general

public [1]. The possibility of programming an actual quantum

device has elicited much enthusiasm. Simultaneously quantum

languages [2]–[4], compilers [5]–[7], quantum instruction set

architectures (QISA) [8]–[11] and microarchitecture [12] have

been studied by the academic community. They still need to be

developed to form a full software stack in order to accelerate

the development of quantum software and hardware.

As pointed out by Prof. Preskill in 2018 [13], Noisy

Intermediate-Scale Quantum (NISQ) technology will be avail-

able in the near future. The NISQ quantum computer with

50-100 qubits may be able to perform tasks which surpass the

capabilities of today’s classical computers but quantum noise

such as decoherence in an entangled system will limit the size

of quantum circuits that can be executed reliably. Due to the

high overhead of quantum error correction [14], NISQ devices

will not make use of it in the near term. Therefore, as quantum

test beds get larger, quantum programming should be lifted to

higher levels of abstraction, while the compiler or runtime

system should consider the constraints of quantum hardware.

In quantum computing, information is stored in quantum

bits – qubits and computation is performed by applying

quantum gates and measurements to the quantum state of

qubits. Quantum states are intrinsically delicate [14]: on the

one hand, quantum gates may introduce small errors which

will accumulate; on the other hand, looking at one quantum

state will collapse it, called the loss of quantum coherence or

decoherence [15]. The coherence time is defined as the time

during which a quantum state holds its superposition [16]. And

each physical qubit has limited coherence time, for example,

to date, quantum states in promising superconducting quantum

circuits only reach coherence times of up to 100μs [17]. In

order to make better use of the fragile physical qubits, research

on parallelizing quantum circuits has been studied [18] [19].

But more research is needed to explore optimization on quan-

tum programs to fit underlying quantum hardware features.

To address the challenges posed by decoherence, we pro-

pose a new approach to minimize the lifetime of each qubit in

the quantum program by program analysis and transformation,

called QLifeReducer (Qubit Lifetime Reducer). Here, the

lifetime of a qubit is defined as starting from its first operation

to the operation making it decoherent or the last one. Since

OpenQASM [9] is a more popular and newly updated quantum

circuit language, we prototype QLifeReducer to transform

OpenQASM programs. As shown in Fig. 1, QLifeReducer

can decompose the h gate operating on an array of qubits a

at line 3 of (a) into two separate h operations on each qubit

at lines 3 and 5 of (b), thus the lifetime of qubit a[1] will be

reduced and start after the measure at line 4. The shortening

of a qubit’s lifetime can reduce error accumulated on the

qubit, so as to improve the accuracy of the quantum program.

Furthermore, the execution time of a quantum program might

be shortened due to the shortened qubit lifetime.

1 q reg a [2] ; q r eg b [1] ;
2 c r e g c [3] ;
3 h a;
4 measure a[0]−>c [0] ;

5 cx a [1] , b [0] ;
6 measure a[1]−>c [1] ;
7 measure b[0]−>c [2] ;

(a) Before

1 q reg a [2] ; q r eg b [1] ;
2 c r e g c [3] ;
3 h a[0];
4 measure a[0]−>c [0] ;
5 h a[1];
6 cx a [1] , b [0] ;
7 measure a[1]−>c [1] ;
8 measure b[0]−>c [2] ;

(b) After

Fig. 1. OpenQASM program example: reducing the lifetime of a[1]

184

2019 International Symposium on Theoretical Aspects of Software Engineering (TASE)

978-1-7281-3342-3/19/$31.00 ©2019 IEEE
DOI 10.1109/TASE.2019.00032

The main contributions of this paper are as follows:

(1) We propose a layered approach to analyze the lifetime of

qubits, where each sequence of quantum operations possibly

executed in parallel are packaged into a bundle, accordingly
forming the layered bundle format of the program.

(2) We design a transformation method to determine which

qubits’ operations can be shifted back according to the layered

bundle format, and then adjust them to obtain the transformed

code, thereby reducing the lifetime of these qubits.

(3) We prototype QLifeReducer to cope with OpenQASM

programs by applying the methods proposed above, and eval-

uate it on both a real IBM Q1 5 Tenerife quantum computer

and self-developed quantum simulator for evaluation.

The evaluation results show that QLifeReducer reduces

the error rate by 11% of a quantum program when executed

on IBM Q 5 Tenerife; and can reduce the longest qubit lifetime

as well as average qubit lifetime by more than 20% on most

quantum workloads. It also reduces the execution time of

some quantum programs. In addition, the layered information

generated by QLifeReducer can also provide a basis for

further parallelization of quantum circuits.

The rest of the paper is organized as follows. Section

II introduces quantum computing basics and motivation ex-

amples. Section III describes the design of QLifeReducer

including the parallelism analysis and the transformer. Section

IV describes the evaluation, and Section V concludes.

II. QUANTUM COMPUTATION

This section first introduces basic concepts of quantum com-

putation and quantum computer system stack, then describes

quantum decoherence and motivation examples against it.

A. Quantum Computing Basics

The quantum bit, or qubit, has a state just as a classical bit.

It may be in an arbitrary superposition of its two basis states

labeled |0〉 (or |g〉, ground state) and |1〉 (or |e〉, excited state):

|ψ〉= α |0〉+β |1〉= α
[

0
1

]
+β

[
1
0

]
=

[
α
β

]
(1)

with complex amplitudes α,β satisfying |α|2 + |β |2 = 1.

The state of a general n-qubit system can be an arbitrary

superposition over all 2n computational basis states, i.e.,

∑
q1,...,qn∈{0,1}n

cq1...qn |q1 . . .qn〉=
2n−1
∑
i=0

ci |i〉 (2)

where the basis state q1 . . .qn is a binary number of integer i.
Again, the complex amplitudes ci should satisfy ∑i |ci|2 = 1.

Quantum gates operate on qubits and change their state.

Fig. 2 lists common one- and two-qubit gates which are all

reversible [20]; that is, each of them can be described by a

unitary matrix U , where U†U = 1 (U† is the adjoint of U). An

arbitrary U operator on a qubit can be written as a combination

of rotations, together with global phase shifts on the qubit [20]:

U = eiα Rz(β)Ry(γ)Rz(δ) (3)

1http://research.ibm.com/ibm-q/

Hardmard
H 1√

2

[
1 1
1 −1

]

Pauli−X
X

[
0 1
1 0

]

Pauli−Y
Y

[
0 −i
i 0

]

Pauli−Z
Z

[
1 0
0 −1

]

Phase
S

[
1 0
0 i

]

π/8 T
[
1 0

0 eiπ/4

]

controlled-NOT
(also called controlled-X,CX)

|A〉
|B〉

|A〉
|B⊕A〉

UCN =

⎡
⎢⎣
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎦

Fig. 2. Names, symbols and unitary matrices for the common gates.

The useful 2-qubit controlled-NOT (CNOT) gate operates on a

control qubit |c〉 and a target qubit |t〉), performing |c〉 |t〉 →
|c〉 |t⊕ c〉; that is, if the control qubit is set to |1〉 then the target
qubit is flipped, otherwise the target qubit is left alone. Multi-

qubit gates are very hard to realize in hardware, however, they

may be composed from CNOT and single qubit gates [20].

Information stored in qubits is retrieved by measurements,

which convert qubits into classical bits. When measuring a

qubit in the superposition state of Equation (1), the outcome

is either 0 or 1 with probability |α|2 or |β |2, respectively, and
the qubit collapses onto the basis state (|0〉 or |1〉).
B. Quantum Computer System Stack

Fig. 3. Overview of quantum computer system stack

There has been a lot of research on each layer of the

quantum computer system stack shown in Fig. 3. The recent

introduced cloud access to quantum devices such as the IBM Q

[21] and Qiskit2 [22] let users more easily write code and run

experiments on the provided quantum devices and simulators

based on (Open)QASM quantum circuit languages [8], [9].

The upper quantum algorithm can be described as a

quantum-classical hybrid program containing a host program

and multiple quantum kernels. The host program can be

written in a classic programming language such as C++

or Python, and the quantum part is written in a high-level

quantum programming languages such as Scaffold [2] or

Project Q [3]. The compiler infrastructure consists of a

conventional host compiler such as GCC and a quantum

compiler such as ScaffCC [5]. The quantum compiler

works on the quantum part and generates quantum circuit

IR (intermediate representation) belonging to a QISA.

2http://qiskit.org/

185

(Open)QASMs [8]–[10] do not consider the low-level

constraints to interface with the quantum processor. They all

lack control micro-architecture that implements and executes

such instructions on a real quantum processor. To bridge the

gap between quantum software and hardware, a quantum

control micro-architecture QuMA [12] and an executable

QISA – eQASM [11] are proposed, but only validated on a

2-qubit superconducting quantum processor.

C. Quantum Noise and the Decoherence Problem

Real quantum systems suffer from unwanted interactions

with the outside world. These unwanted interactions show up

as noise in quantum information processing (QIP) systems. For

example, both the entanglement of the quantum system with

the surrounding environment and quantum measurements will

lead to the disappearance of quantum coherence, denoted as

quantum decoherence. Decoherence invalidates the quantum

superposition principle and thus turns quantum computers into

(at best) classical computers, negating the potential power

offered by the quantumness of the algorithms [15]. To date, for

the promising superconducting qubits, the longest coherence

time is still within 10∼100 μs [17]; a typical gate time is

20ns for single-qubit gates and ∼ 40 ns for 2-qubit gates,

the duration of a measurement is typically 300ns - 1μs [11].

Assume a single-qubit gate time is τu, a two-qubit gate time is

2τu, and a measurement time is τm = mτu, where m is 15∼50.
Due to decoherence, the quantum program must complete

execution quickly before the qubit state is decayed. The longer

a quantum program runs and the more operations it performs,

the more it is susceptible to noise. Therefore, it is necessary to

shorten the duration of qubits in superposition in the program.

D. Motivation Examples against Decoherence

We select OpenQASM to carry out the research in this

paper since it is supported by IBM Q and can be generated

by quantum compilers such as ScaffCC. Table I lists main

quantum instructions in OpenQASM. The built-in universal

gate basis is “CNOT+U(2)”. All the single qubit gates and

two-qubit CNOT gate shown in Fig. 2 are built in3.

TABLE I
MAIN QUANTUM-RELATED STATEMENTS IN OPENQASM LANGUAGE

Statement Description

qreg name[size]; Declare a named register of qubits
gate name(params) qargs body Declare a unitary gate

U(γ,β ,δ) qubit|qreg; Apply built-in single qubit gate(s)
CX qubit|qreg,qubit|qreg; Apply built-in CNOT gate(s)
measure qubit|qreg -> bit|creg; Make measurement(s) in Z basis
gatename(params) qargs; Apply a user-defined unitary gate

1) Lifetime of a qubit: In the classical program such as C

program shown in Fig. 4, moving int j=1 from line 3 of

(a) to line 1 of (b) does not influence the execution result.

However, as shown in Fig. 1 (a), qubits a[0] and a[1] are

3The definition of U in OpenQASM is similar to Equation (3), but without
global phase shifts on the qubit, i.e.,U here is only Rz(β)Ry(γ)Rz(δ).

1 i n t i =0 ;
2 i = i +1 ;
3 int j=1;
4 j += i *2 ;
5 r e t u r n j ;

(a)

1 i n t i =0 , j=1 ;
2 i = i +1 ;

3 j += i *2 ;
4 r e t u r n j ;

(b)

Fig. 4. C program examples: different declaration locations for variable j

applied Hadamard operation at line 3, entering superposition

state, and start their lifetime. The lifetime of a[1] ends after

the measurement at line 6, occupying (3+ 2m)τu. During

the period, the measure at line 4 is independent of a[1],

however, it makes the fragile qubit a[1] have to wait on

the superposition before executing the CNOT and accumulate

error, accordingly increasing the program’s error rate. If

decomposing h a; and delaying h a[1]; at line 5 of Fig. 1

(b), the lifetime of a[1] will be reduced to (3 + m)τu.

Section IV will show the movement improves the accuracy

of the program running on a real IBM Q 5 Tenerife.

2) Parallel Execution: In order to better use the fragile

physical qubits, the parallelization of quantum circuits has

been studied [18], [19]. The recent eQASM [11] adopts

Single-Operation-Multiple-Qubit (SOMQ, similar to classical

SIMD) execution, and a Very-Long-Instruction-Word (VLIW)

architecture. The former supports applying a single quantum

operation on multiple qubits, while the latter can combine

multiple different quantum operations into a quantum bundle.

These parallel features need be considered when converting

quantum programs into physical quantum circuits. In this

paper, we assume that neighboring gates operating on disjoint

qubit subsets can always be applied in parallel, which is a

common assumption for quantum technologies.

Take the quantum program in Fig. 5 (a) as an example, this

code fragment is part of a workload provided by ProjectQ

[3], which is used to entangle a given number of qubits on

IBM Q’s 16-qubit quantum computer. Due to the parallelism

of the quantum hardware and architecture, we can analyze the

dependencies of qubit operations in the program and package

them into layered bundles, where operations on the same layer

is a bundle and can be executed in parallel. Fig. 5 (b) shows

the layered bundle format corresponding to code in Fig. 5 (a).

The layered bundle format (defined in Section III-B) reflects

the parallelism and execution dependencies among quantum

operations. By further analysis, with the dependencies among

quantum operations unchanged, the execution level of some

quantum operations in Fig. 5 (b) can be adjusted to shorten

the lifetime of the qubits involved, accordingly obtaining Fig. 5

(c). Thereinto, node h© in column q[1] (h q[1];) is adjusted

backward to layer 3, node h© in column q[6] (h q[6];) is

adjusted forward to layer 1, and the subsequent operations that

depend on them are also adjusted. The depth of the adjusted

layered bundle format is reduced from 7 to 5. According to

Section II-C, a layer that only contains single qubit gates such

as h costs 1τu, while the one contains two-qubit gates like

cx costs 2τu. So the total execution time of the program will

186

1 q r eg q [1 6] ;
2 c r eg c [1 6] ;
3 h q[1];
4 h q [2] ;
5 cx q [2] , q [3] ;
6 h q [2] ;
7 h q[6];
8 cx q [6] , q [1 1] ;
9 cx q [1] , q [2] ;

10 h q [1 1] ;
11 h q [6] ;
12 cx q [6] , q [1 1] ;
13 cx q [1 1] , q [1] ;
14 . . .

(a) Before (b) Before: Layered bundle format (c) After: Layered bundle format

1 q reg q [1 6] ;
2 c r eg c [1 6] ;
3 h q [2] ;
4 h q[6];
5 cx q [2] , q [3] ;
6 cx q [6] , q [1 1] ;
7 h q[1];
8 h q [2] ;
9 h q [1 1] ;
10 h q [6] ;
11 cx q [1] , q [2] ;
12 cx q [6] , q [1 1] ;
13 cx q [1 1] , q [1] ;
14 . . .

(d) After

Fig. 5. OpenQASM program example: package operations into layered bundles

Fig. 6. Overview of the QLifeReducer

be shortened from 11τu to 8τu at maximum parallelization.

Similarly, we can calculate the lifetime of qubits. After the

transformation, the lifetime of q[1] reduces from 11τu to 5τu.

By topologically sorting the nodes in Fig. 5 (c), we can obtain

the code sequence in Fig. 5 (d).

III. DESIGN

Following the idea of motivation examples described be-

fore, we have developed QLifeReducer to reduce the qubit

lifetime in a quantum program, considering the parallelism of

quantum operations. This section first gives an overview of the

design then describes the related definitions and algorithms.

A. Overview

The QLifeReducer copes with an input OpenQASM pro-

gram, and outputs the optimized OpenQASM code with

shortened qubit lifetime. The input program might come from

ScaffCC [5], ProjectQ [3], QISKit [6] or other OpenQASM

provider. As shown in Fig. 6, there are three core modules

in the QLifeReducer. The Parser mainly performs macro

expansion, that is, expanding user-defined gates (Table I),

and obtains a sequence of built-in quantum instructions.

The Parallelism Analyzer (described in Section III-C) then

analyzes the expanded sequence and packages each sequence

of parallelizable operations into a bundle, forming the layered

bundle format discussed in Section II-D. After that, the

Transformer (described in Section III-D) analyzes the layered

bundle format and adjusts it to reduce the qubit lifetime, then

converts the adjusted one to the corresponding OpenQASM

code. The output OpenQASM program can be run on the

quantum backend such as IBM Q quantum computer or

simulator.

In the following subsections, we will use the example in

Fig. 5 to explain main algorithms of the QLifeReducer.

B. Definitions

Definition 1 (Qubit Set of an Instruction) For a quantum

instruction ι , the qubit set of ι is denoted as S(ι) that

contains the qubits operated by ι . For example, if ι is “CX

q[1],q[2]”, then S(ι) = {q[1], q[2]}.
Definition 2 (Overlapped) For two quantum instructions ι1
and ι2, if

S(ι1)∩S(ι2) �= φ ,

then they are overlapped with each other.

Overlapped instructions cannot be executed in parallel

because only one quantum instruction can be applied on the

intersecting qubit at the same time.

Definition 3 (Parallelizable) For two quantum instructions ι1
and ι2, if

S(ι1)∩S(ι2) = φ ,

then they are parallelizable with each other.

Parallelizable instructions can be executed in parallel.

Definition 4 (Bundle) A bundle is a set of quantum instruc-

tions that are parallelizable with each other. All instructions

in one bundle can be executed in parallel.

The qubit set of a bundle is the union set of the qubit set

of all the instructions in the bundle. For a bundle b,

S(b) =
⋃
ι∈b

S(ι)

Definition 5 (Layered bundle format) The layered bundle
format of a quantum program can be represented as a

directed acyclic graph, in which all the qubits involved are

start nodes at layer 0 and instruction operators in each bundle

are nodes at the same layer like Fig. 5 (b). Each directed

edge < o, ι > connects an instruction operator ι (arc head)

and another instruction operator or a qubit o (arc tail) which

ι directly depends on, making instructions connected in

execution order.

187

We denote the layer of an instruction ι as L(ι). If there is

directed edge < n2,n1 > in the layered bundle format, then

node n1 is the successor of node n2, if further satisfying

L(n2)+1= L(n1), then n1 is the next-layer successor of n2.

C. The Algorithm for Parallelism Analyzer

As shown in Fig. 6, the Parallelism Analyzer is responsible

for converting the quantum code (Fig. 5 (a)) into the layered

bundle format (Fig. 5 (b)), and the main algorithm is described

in Alg. 1. First, an empty array of bundles B is initialized, then

it attempts to find a sequence of parallelizable instructions

to form a bundle in each iteration of the outer while loop.

During each iteration, it first creates an empty bundle b as the

current bundle and an empty set Q saving qubits operated by

any instruction in b, then determines whether each instruction

I[index] processed in turn can be executed in parallel with

instructions in b by deciding whether the qubit intersection

Q∩ S(I[index]) is empty. If I[index] can be parallel with b,
it will be added into b, and the operated qubits will also be

added into Q. If the instruction is overlapped with b, then b
is complete and can be added to B. The iteration is then over

and the next instruction will be handled in the next iteration.

Algorithm 1 Transform code into layered bundle format

Input: Array of quantum instructions: I
Output: Array of bundles: B

function stratify(Instruction I[])
2: B← an empty array o f bundles

index← I.start
4: while index �= I.end do

b← a new empty bundle
6: Q← φ

while Q∩S(I[index]) = φ do
8: Q← Q∪S(I[index])

b← b∪{I[index]}
10: index← index+1

end while
12: B.append(b)

end while
14: return B

end function

The code in layered bundle format will help us identify the

instructions that might be shifted. Furthermore, it is also a

basis of parallelizing quantum instructions and mapping them

into parallel quantum circuits in our future work.

D. Algorithms for the Transformer

The Transformer performs two steps, first adjusts the lay-

ered bundle format to shorten the qubit lifetime, i.e.,from
Fig. 5 (b) to (c); then converts the adjusted layered bundle

format to OpenQASM code, i.e.,from (c) to (d). The first step

is the core of the module and will be illustrated via Fig. 7 .

1) Main Idea of the Adjustment: First, we need recognize

instructions that should be adjusted. As discussed in Section

II, an instruction ι starts the lifetime of a qubit q only when it

changes the qubit from ground state into superposition state.

If the next instruction ι ′ operating on q is not the next-layer

successor of ι , ι could be delayed. In Fig. 7 (a), the h gate

operating on q[1] at layer 1 (labelled A) starts the lifetime of

Fig. 7. Transformation process to reduce the qubit lifetime

q[1]. Since A’s successor (node B) is at layer 4, A could be

delayed to shorten the lifetime of q[1].

Second, for an instruction ι to be delayed, we need decide

at which layer ι could be put, and the adjustment must shorten

the qubit lifetime without changing the execution order of

instruction operators applied on a certain qubit. We need

iteratively analyze each successor ι ′ of ι , and ensure that

the adjusted layer of ι , denoted as L′(ι), is not less than

the layer of other operand which ι ′ depends on. Continue

to consider Fig. 7 (a), B (the successor of A) has another

operand q[2] at layer 3, so L′(A)≥ 3 and L′(A)≤ L′(B)−1;

we further analyze B and its successor C, and obtain L′(B)≥ 6

and L′(B) ≤ L′(C)− 1 since C’s another operand is q[6] at

layer 6. Because C has no successor, C should not be adjusted,

i.e.,L′(C) = L(C). By solving the above constraints, we can get

L′(B) = 6,L′(A) = 5 and the adjusted format is shown in Fig. 7

(b). Similarly, we can adjust D and get Fig. 7 (c).

Third, if the lowest layer that contains operators is layer n
(n > 1), then the layer and its successors could move forward

to (n−1) layers. For example, layer 3 is the lowest layer that

contains operators, thus layers 3∼7 could move forward to

1∼5, accordingly transforming from Fig. 7 (c) to Fig. 5 (c).

2) Data Structures: To implement the main idea, we design

data structures for qubits and instructions (or called operation).

A qubit is represented as a triple q = (id, I,state), where
• id is the unique identifier of the qubit.

• I is an ordered list of instructions operating on the qubit.

The order of instructions in I depends on their execution

order in the original program.

• state is the qubit state, whose value can be GROUND or

NOTGROUND, representing ground state and superposition

state, respectively.

An instruction in the layered bundle format is represented

as ι = (id,op,seq,S,visited) contains four elements.

• id is the unique identifier of the instruction.

• op is the operator of the instruction, e.g. h, cx, measure.
• seq indicates the layer of the instruction, e.g. A.seq = 1

in Fig. 7 (a).

• S is the qubit set of the instruction.

• visited is a bool flag indicating whether the instruction

has been visited.

3) The Main Algorithm of the Transformer: Alg. 2 gives the

definition of function transform that adjusts the code to reduce

the qubit lifetime. It traverses all instructions in each bundle.

For an unvisited instruction ι , if any of its operands is in

188

GROUND state, that is, function checkQ(ι ,NOTGROUND) returns
false, instruction ι could be delayed. Then function transform
will call function adjust to adjust related instructions. Alg. 3

defines the auxiliary functions invoked by Alg. 2 .

Algorithm 2 Transform code to reduce the qubit lifetime

Input: Array of bundles: B
Output: Array of bundles with shorter qubit lifetime

function transform(Bundle B[])
2: index← B.start

while index �= B.end do
4: for all instruction ι ∈ B[index] do

if (checkQ(ι ,NOTGROUND) = True) then
6: continue

end if
8: if ι .visited = True then

continue
10: end if

ι .visited ← True
12: setQ(ι ,NOTGROUND)

adjust(ι ,B)
14: end for

index← index+1
16: end while

index← B.start � remove empty bundles at lower layers
18: while B[index] is empty do

index← index+1
20: end while

B.start ← index
22: return B

end function

Algorithm 3 Set and Check Qubit State

function setQ(Instruction ι , State state)
for all q ∈ S(ι) do

q.state← state
end for

end function

function checkQ(Instruction ι , State state)
for all q ∈ S(ι) do

if q.state �= state then
return False

end if
end for
return True

end function

4) Algorithm on Adjustment: Alg. 4 shows the pesudo

code of function adjust to do adjustment related to a given

instruction ι in an array of bundles B. The adjustment should

keep the original execution order of operations related to

each qubit, and an instruction must not execute later than its

successor. To adjust an instruction ι , a bundle stack bstack is

introduced to save bundles of instructions to be adjusted, and it

is initialized as a stack with only one element {ι}. A qubit set

Q is introduced to collect all qubits depended by instructions

saved in bstack, and is initialized as S(ι). Function adjust
traverses and copes with all the successors of ι until reaching

the end of the program or a measure operation to any qubit in

Q. When the function finds an instruction ι2 that is overlapped
with Q, it means that ι2 is the successor of some instructions

in bstack and we need delay them together to keep the order

constraints. So ι2 would be pushed into bstack and S(ι2) also

Algorithm 4 Adjust an Instruction

function ad just(Instruction ι , Bundle B[])
2: Q← S(ι)

cur← ι .seq+1 � ι belongs to B[ι .seq]
4: bstack← initialize an empty bundle stack

bstack.push({ι})
6: f lag← False

while cur �= B.end and f lag =False do
8: b← a new empty bundle

for all ι2 ∈ B[cur] do
10: if ι2.visited =False and S(ι2)∩Q = φ then

if ι2.op = measure then
12: f lag← True

setQ(ι2,GROUND)
14: end if

b← b∪{ι2}
16: Q← Q∪S(ι2)

ι2.visited ← True
18: B[cur]← B[cur]\{ι2} � remove ι2 from B[cur]

end if
20: end for

if b is not empty then
22: bstack.push(b)

end if
24: cur← cur+1

end while
26: last ← bstack.top() � The last instruction that enters the stack

line = last.seq
28: while bstack is not empty do

b← bstack.pop()
30: B[line]← B[line]∪b

line← line−1
32: end while

end function

be merged into Q. After the function finds all the instructions

that need to be postponed, it will pop the stack and decide the

new layer of each instruction according to the last one’s layer.

The trans f orm algorithm won’t increase the number of

bundles. From Alg. 4 you can see, what we adjust on the

quantum circuit program includes: 1) Remove an instruction

ι2 from a bundle in the original quantum circuit, and add ι2
into a temporary bundle b; 2) The formed temporary bundle

is pushed into bstack, and will be popped to adjust its layer

later.

E. Algorithm Complexity

Suppose a quantum circuit program has n quantum instruc-

tions applied on d qubits, ad just(ι ,B) handles each unvisited

instruction in B[cur] (cur > L(ι)), thus the time complexity of

Alg. 4 is O(n). For function trans f orm(B), it invokes ad just()
less than d times, so the time complexity of Alg. 2 is O(dn).

IV. EVALUATION

This section first introduces the QLifeReducer proto-

type implementing algorithms mentioned in Section III, then

evaluates the effect of QLifeReducer on quantum program

transformation, including accuracy and efficiency.

A. Prototype

We have built QLifeReducer and a simulator for evalua-

tion on Linux with C++. As shown in Fig. 6, QLifeReducer

takes the text of an OpenQASM program as input and outputs

the transformed OpenQASM program. First the Parser, where

classes Instruction and Qubit are defined, analyzes the

189

input text and builds the corresponding Instruction list

and Qubit list. Then the Parallelism Analyzer, where class

Bundle is defined, analyzes the lists of Instruction and

Qubit, and builds the array of Bundle according to Alg. 1.

Finally, the Transformer analyzes the lists of Instruction

and Qubit as well as the array of Bundle, and outputs the

transformed code according to Alg. 2 and 4. The total number

of LOC (lines of code) in QLifeReducer is 1106.

Since the availability of the real quantum computer is

extremely limited, we build a simulator that calculates the

lifetime of each qubit and the execution time about the input

OpenQASM program in the way discussed in Section II-D2.

The number of LOC in the simulator is 424.

B. Methodology

1) Accuracy: There is no available quantum simulator

considering quantum noise and the accuracy of programs when

running on the simulators is always 100%. So we use the real

quantum device, IBM Q 5 Tenerife, to evaluate the accuracy of

two quantum circuits before and after transformation in Fig. 8.

We discuss the detail in Section IV-C.
2) Qubit Lifetime: The quantum hardware has some lim-

itations. It has serious error rate on quantum gates and

measurements, and only supports 5 qubits at most which

is not enough for many quantum programs. Although the

simulator cannot simulate quantum noise, it can calculate the

execution time and the qubit lifetime of the program. Due to

decoherence, these features would also affect the accuracy of

quantum circuits. So we use our quantum simulator to evaluate

the execution time, the longest qubit lifetime and average qubit

lifetime of quantum programs.

TABLE II
QUANTUM WORKLOADS

Program Description Qubits

3G 3-qubit Grover’s algorithm 3

DE Deutsch’s algorithm that exponentially acceler-
ates classical algorithms

2

4QFT, 5QFT Quantum Fourier Transform using 4 or 5 qubits 4,5

IBM 6 Entangle 6 qubits in IBM’s quantum chip and
test their accuracy

16

NIQFT Inverse Quantum Fourier Transform using N
qubits, where N could be 4, 8, 16, 32, 64

N

Table II lists the tested quantum workloads, where 3G,

DE, 4QFT and 5QFT come from Qiskit, IBM 6 from Project

Q. Qiskit also provides 4IQFT, and we expand it with more

qubits, i.e.,obtaining NIQFT.

C. Experiments on Quantum Hardware

IBM Q has provided several superconducting quantum

computers: IBM Q 20 Tokyo, IBM Q 14 Melbourne, IBM Q 5

Tenerife and IBM Q 5 Yorktown. Only Tenerife and Yorktown

can be used for public, but Yorktown is under maintenance. So

we choose Tenerife for our experiments. Table III lists error

rate and other parameters for each quibit in Tenerife.

TABLE III
PARAMETERS OF IBM Q 5-QUBIT TENERIFE

Q0 Q1 Q2 Q3 Q4

Frequency(GHz) 5.25 5.30 5.35 5.43 5.18

Single-qubit gate error(10−3) 0.69 1.29 1.12 1.97 1.80

Readout error(10−2) 6.10 6.90 7.90 7.80 25.20

Multi-qubit Gate error CX10 CX20 CX32 CX42

(10−2) 3.22 2.59 7.46 5.53
CX21 CX34
4.23 6.73

We use the accuracy of quantum circuits of Bell State [20]

to show the benefits of QLifeReducer. Fig. 8 (a) and (b)

show the quantum circuits before and after transformation by

QLifeReducer, and both of them will bound qubits q[0]

and q[1] into Bell State. In the circuits, we focus on the

result of qubits q[0] and q[1] and ignore the result of

q[2] and q[3]. The only difference between the two circuits

is the time gap between the H gate on q[1] and CNOT on

q[0], q[1] which are used to create a Bell State. After the

CNOT operation, q[0] and q[1] are in Bell State and their

state is
|00〉+|11〉√

2
. In an ideal quantum computer, the measured

result of q[0] and q[1] should be 00 or 11 with both 50%

probability. However, because of hardware error caused by the

decoherence and quantum noise, there will be an amount of

result 01 and 10 which are considered as error states. To reduce

the effect of outliers, we run each circuit 1024 times in one

group on Tenerife, and record the ratio of state |00〉 , |01〉 , |10〉
and |11〉. 25 groups for each circuit are tested on Tenerife, and

the average ratios of each resulting state are listed on Fig. 8

(c). We see that the error rate (ratio of error states) reduces

from 14.24% down to 12.64%. From the experimental results,

we see that IBM’s quantum chips have significant noise, where

the final error rate is higher than 10%. QLifeReducer indeed

improves the accuracy of quantum circuits against decoherence

for quantum computers with noise.

D. Evaluation on the Simulator
We run workloads listed in Table II on the self-developed

simulator and Table IV lists the result.

TABLE IV
TEST RESULT OF WORKLOADS OBTAINED FROM THE SIMULATOR

Workload Execution time Longest lifetime Average lifetime
before after before after before after

3G 128 128 128 128 128 127
DE 20 20 20 19 4.8 4.6

4QFT 103 98 103 92 91.8 83.4
5QFT 126 126 126 126 126 104.4
IBM 6 306 246 300 246 211 162
4IQFT 68 68 68 34 42 29
8IQFT 150 150 150 38 80 32
16IQFT 362 362 362 46 172 37
32IQFT 978 978 978 62 420 46
64IQFT 2978 2978 2978 94 1172 62

The unit of values in Columns 2∼ 7 is τu, i.e.,the executiontime of single
qubit gate, generally 20ns.

We see that QLifeReducer reduce the average qubit

190

(a) Before transformation (b) After transformation

State Before After

00 46.59% 46.01%
01 7.80% 7.52%
10 6.44% 5.12%
11 39.18% 41.35%

Error (01,10) 14.24% 12.64%

(c) Comparison between two circuits

Fig. 8. Quantum circuits testing on IBM Q 5 Tenerife

lifetime for every workload, and sometimes can reduce the

total execution time of the program. The reduction is tiny

when qubits number is less than 4(3G and DE). But as

the number of qubits used in the program increases(other

algorithms), the reduction of average qubit lifetime brought by

QLifeReducer is prominent. The reason is that there is spatial

locality in quantum program. Programmers tend to use several

certain qubits in one part and QLifeReducer can reassemble

the program and remove the spatial locality. This will help

increase the program’s parallelism and also reduce the qubit

lifetime. With the reduction of qubit lifetime, quantum system

can further effectively control the use of qubits.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed QLifeReducer that can reduce

the qubit lifetime of quantum programs considering the paral-

lel execution of quantum circuits. With a parallelism analyzer,

QLifeReducer converts the quantum program into layered

bundle format. Then QLifeReducer applies transformation

algorithm on the code in layered bundle format and reduces

its qubit lifetime and execution time. By shortening the qubit

lifetime of the quantum program, QLifeReducer can reduce

the error rate caused by decoherence of qubits which is

unavoidable in the NISQ quantum computers.

Our future work will include the efficiency improvement

of the transformation algorithms and the combination with

other optimization methods. We are also intend to build a

more comprehensive quantum simulator for evaluation that

considers the noise in quantum hardware.

ACKNOWLEDGMENT

This work was partly supported by the grants of Anhui Initiative in

Quantum Information Technologies (No. AHY150100), the National Natural

Science Foundation of China (No. 61772487) and Anhui Provincial Major

Teaching and Research Project (No. 2017jyxm0005). The authors also would

like to thank Prof. Jinshi Xu for discussing quantum computing problems.

REFERENCES

[1] IBM, “Ibm makes quantum computing available on
IBM Cloud to accelerate innovation,” https://www-
03.ibm.com/press/us/en/pressrelease/49661.wss, 4 May 2016.

[2] A. J. Abhari, A. Faruque, M. J. Dousti et al., “Scaffold: Quantum
programming language,” Princeton University, Tech. Rep. TR-934-12,
2012.

[3] D. S. Steiger, T. Häner, and M. Troyer, “ProjectQ: an open source
software framework for quantum computing,” Quantum, vol. 2, p. 49,
Jan. 2018. [Online]. Available: https://doi.org/10.22331/q-2018-01-31-
49

[4] K. M. Svore, A. Geller, M. Troyer et al., “Q#: Enabling scalable
quantum computing and development with a high-level domain-specific
language,” in RWDSL 2018. ACM, February 2018. [Online]. Available:
https://dl.acm.org/citation.cfm?id=3183901

[5] A. J. Abhari, S. Patil, D. Kudrow, J. Heckey, A. Lvov, F. T.
Chong, and M. Martonosi, “ScaffCC: A framework for compilation
and analysis of quantum computing programs,” in 11th CF. New
York, NY, USA: ACM, 2014, pp. 1:1–1:10. [Online]. Available:
http://doi.acm.org/10.1145/2597917.2597939

[6] A. Cross, “The IBM Q experience and QISKit open-source quantum
computing software,” Bulletin of the American Physical Society, 2018.

[7] T. Hner, D. S. Steiger, K. Svore, and M. Troyer, “A software
methodology for compiling quantum programs,” Quantum Science
and Technology, vol. 3, no. 2, p. 020501, 2018. [Online]. Available:
https://arxiv.org/pdf/1604.01401.pdf

[8] K. M. Svore, A. V. Aho, A. W. Cross, I. Chuang, and I. L. Markov,
“A layered software architecture for quantum computing design tools,”
IEEE Computer, vol. 39, no. 1, pp. 74–83, 2006. [Online]. Available:
doi.ieeecomputersociety.org/10.1109/MC.2006.4

[9] A. W. Cross, L. S. Bishop, J. A. Smolin, and J. M. Gambetta, “Open
quantum assembly language,” arXiv:1707.03429, 2017.

[10] R. S. Smith, M. J. Curtis, and W. J. Zeng, “A practical quantum
instruction set architecture,” ArXiv e-prints, Feb. 2017.

[11] X. Fu, L. Riesebos, M. A. Rol et al., “eQASM: An executable quantum
instruction set architecture,” in HPCA 2019, Feb 2019, pp. 224–237.

[12] X. Fu, M. A. Rol, C. C. Bultink et al., “A microarchitecture for a
superconducting quantum processor,” IEEE Micro, vol. 38, no. 3, pp.
40–47, May 2018.

[13] J. Preskill, “Quantum computing in the NISQ era and beyond,” ArXiv
e-prints, Jan. 2018.

[14] D. Gottesman, “An introduction to quantum error correction and
fault-tolerant quantum computation,” in Proc. of Symposia in Applied
Matthematics, 2010. [Online]. Available: http://arxiv.org/abs/0904.2557

[15] W. H. Zurek, “Decoherence and the transition from quantum to
classical,” Physics Today, vol. 44, pp. 36–44, Oct. 1991. [Online].
Available: https://physicstoday.scitation.org/doi/10.1063/1.881293

[16] T. S. Metodi, A. I. Faruque, and F. T. Chong, Quantum Computing for
Computer Architects, Second ed., ser. Synthesis Lectures on Computer
Architecture #13. USA: Morgan & Claypool Publishers, Mar. 2011.

[17] M. Reagor, W. Pfaff, C. Axline et al., “Quantum memory
with millisecond coherence in circuit qed,” Phys. Rev.
B, vol. 94, p. 014506, Jul 2016. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevB.94.014506

[18] A. Broadbent and E. Kashefi, “Parallelizing quantum
circuits,” Theoretical Computer Science, vol. 410,
no. 26, pp. 2489 – 2510, 2009. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0304397508009377

[19] O. D. Matteo and M. Mosca, “Parallelizing quantum circuit synthesis,”
Quantum Science and Technology, vol. 1, no. 1, p. 015003, 2016.
[Online]. Available: http://stacks.iop.org/2058-9565/1/i=1/a=015003

[20] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information, 10th Anniversary ed. UK: Cambridge University Press,
2010.

[21] S. J. Devitt., “Performing quantum computing experiments in the cloud,”
vol. 94, 2016.

[22] D. Lubensky, “Quantum computing gets an API and SDK,”
https://developer.ibm.com/dwblog/2017/quantum-computing-api-sdk-
david-lubensky/, 6 Mar. 2017.

191

